Кунсткамера: читальный зал. Атомная энергетика — За и Против История Балаковской атомной

Работа выполнена учащимися 11 класа Селиверстовым В., Руденко Н.

Необходимость атомной энергетики.

  • Мы научились получать электрическую энергию из невосполняемых ресурсов - нефти и газа, из восполняемых - воды, ветра, солнца. Но энергии солнца или ветра недостаточно, чтобы обеспечить активную жизнедеятельность нашей цивилизации. А гидроэлектростанции и ТЭЦ не так чисты и экономны, как того требует современный ритм жизни


Физические основы атомной энергетки.

    Ядра некоторых тяжелых элементов - например, некоторых изотопов плутония и урана - при определенных условиях распадаются, выделяя колоссальное количество энергии и превращаясь в ядра других изотопов. Этот процесс и называется расщеплением ядер. Каждое ядро, расщепляясь, «по цепочке» вовлекает в расщепление и своих соседей, поэтому процесс называется цепной реакцией. Ход ее непрерывно контролируется с помощью специальных технологий, так что он еще и контролируемый. Все это и происходит в реакторе, сопровождаясь выбросом огромной энергии. Эта энергия разогревает воду, которая вращает могучие турбины, которые вырабатывают электричество


Принцип работы аЭС


Мировая атомная энергетика.

  • Ведущие производители атомной энергии в мире - почти все самые технически развитые страны: США, Япония, Великобритания, Франция и, конечно, Россия. Сейчас во всем мире действует около 450 атомных реакторов.

  • Отказались от атомных электростанций: Германия, Швеция, Австрия, Италия.


Российские АЭС.

  • Балаковская

  • Белоярская

  • Волгодонская

  • Калининская

  • Кольская

  • Курская

  • Ленинградская

  • Нововоронежская

  • Смоленская


Российская атомная энергетика.

    История атомной энергетики в России началась 20 августа 1945 года, когда был создан «Специальный комитет по управлению работами с ураном», а спустя 9 лет уже была построена первая АЭС - Обнинская. Впервые в мире атомная энергия была приручена и поставлена на службу мирным целям. Безупречно проработав 50 лет, Обнинская АЭС стала легендой, а выработав свой ресурс, была отключена.

  • Сейчас в России работает 31 атомный энергоблок на 10 АЭС, которые питают четверть всех электрических лампочек в стране.


Балаковская Атомная.


Балаковская Атомная.

    Балаковская АЭС - крупнейший в России производитель электроэнергии. Ежегодно она вырабатывает более 30 миллиардов кВт. час электроэнергии (больше, чем любая другая атомная, тепловая и гидроэлектростанция страны). Балаковская АЭС обеспечивает четверть производства электроэнергии в Приволжском федеральном округе и пятую часть выработки всех атомных станций страны. Ее электроэнергией надежно обеспечиваются потребители Поволжья (76 % поставляемой ею электроэнергии), Центра (13 %), Урала (8 %) и Сибири (3 %). Электроэнергия Балаковской АЭС - самая дешевая среди всех АЭС и тепловых электростанций России. Коэффициент использования установленной мощности (КИУМ) на Балаковской АЭС составляет более 80 процентов.


технические характеристики.

  • Реактор типа ВВЭР-1000 (В-320)

  • Турбоустановка типа К-1000-60/1500-2 с номинальной мощностью 1000 МВт и частотой вращения 1500 об./мин.;

  • Генераторы типа ТВВ-1000-4 мощностью 1000 МВт и напряжением 24 кВ.

  • Ежегодная выработка электроэнергии составляет свыше 30-32 млрд кВт(2009 - 31,299 млрд кВт·ч.

  • Коэффициент использования установленной мощности - 89,3 %.


История Балаковской атомной.

  • 28 октября 1977 г – закладка первого камня.

  • 12 декабря 1985 г – пуск 1 энергоблока.

  • 24 декабря 1985 г – первый ток.

  • 10 октября 1987 г – 2 энергоблок.

  • 28 декабря 1988 г – 3 энергоблок.

  • 12 мая 1993 г – 4 энергоблок.


Достоинства атомных станций:

  • Небольшой объём используемого топлива и возможность его повторного использования после переработки.

  • Высокая единичная мощность: 1000-1600 МВт на энергоблок;

  • Относительно низкая себестоимость энергии, особенно тепловой;

  • Возможность размещения в регионах, расположенных вдали от крупных водноэнергетических ресурсов, крупных месторождений, в местах, где ограничены возможности для использования солнечной или ветряной электроэнергетики;

  • Хотя при работе АЭС в атмосферу и выбрасывается некоторое количество ионизированного газа, однако обычная тепловая электростанция вместе с дымом выводит ещё большее количество радиационных выбросов из-за естественного содержания радиоактивных элементов в каменном угле.


Недостатки атомных станций:

  • Облученное топливо опасно: требует сложных, дорогих, длительных мер переработки и хранения;

  • Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;

  • С точки зрения статистики крупные аварии весьма маловероятны, однако последствия такого инцидента крайне тяжёлы, что делает трудноприменимым страхование, обычно применяемое для экономической защиты от аварий;

  • Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700-800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также для последующей ликвидации отслуживших блоков;

  • Так как для АЭС необходимо предусматривать особо тщательно процедуры ликвидации (из-за радиоактивности облученных конструкций) и особо длительное наблюдение отходов - по времени заметно большем, чем период самой эксплуатации АЭС - то это делает неоднозначным экономический эффект от АЭС, сложным его корректный расчет.


Слайд 2

Цель: выяснить цель и пользу атомной энергии

Слайд 3

Люди всегда относились к природе прагматически. Именно этот подход привёл к тому, что в ХХв. произошло глобальные изменения, которые делали реальную угрозу самоуничтожения человечества. Одно из них- овладение атомной энергией. Сегодня мы постараемся выяснить положительные и отрицательные стороны её применения.

Слайд 4

С развитием человеческого общества непрерывно увеличивалось потребление энергии. Так. если миллион лет назад оно составляло на душу населения примерно 0,1 кВт в год, а 100 тыс. лет назад - 0,3 кВт, то в XV в. - 1,4 кВт, в начале XX в. -3,9 кВт, а к концу XX в. - уже 10 кВт.

Слайд 5

Хотя сейчас почти наполовину используется органическое топливо ясно, что его запасы вскоре будут исчерпаны. Необходимы другие источники, и один из наиболее реальных - ядерное топливо.

Слайд 6

Процесс получения энергии всегда связан с вредными для человека последствиями независимо от вида топлива, но степень вредности разная... Ядерное топливо наиболее безопасно, да и запасы его велики. В настоящее время ядерная энергия вырабатывается в основном в реакторах на тепловых нейтронах, уже получили развитие брудеры (реакторы на быстрых нейтронах). Ядерные реакторы постоянно совершенствуются, уровень безопасности повышается. Предельной дозой считается такая, когда равномерное облучение в течение 70 лет не вызывает ухудшения здоровья, обнаруживаемого современными методами. Ежегодная доза излучений, которые приходят к нам из космоса и от других природных источников, составляет 2 мЗв. Персонал АЭС получает в год дозу облучения 1.1 мЗв. Излучение, выделяемое всеми АЭС, будет значительным.

Слайд 7

Радиационную защиту реактора обеспечивают многие факторы: толстые стены и корпус из железобетона, замкнутый цикл и др.

Слайд 8

Слайд 9

Наибольшую проблему представляет переработка и хранение отработанного топлива.

Слайд 10

Со временем эта проблема будет решена. Сейчас в нашей стране твёрдые радиоактивные отходы в стальных бочках и в соляных пластах.

Слайд 11

Слайд 12

Слайд 13

Использование атомной энергии сейчас решает часть энергетических проблем. Но вреда от использования атомной энергия больше, чем пользы. Весь технологический процесс добычи изготовления атомного горючего на каждом этапе связан с вероятностью радиоактивного заражения окружающей среды и облучения людей.

Слайд 14

Обойтись без использования явления радиоактивности и изотопов человечество не может. Мы используем это явление практически во всех областях деятельности: медицине, археологии, дефектоскопии, селекции сельскохозяйственных культур

Слайд 15

Например, использование меченых атомов позволяет провести диагностику многих заболеваний: с помощью радиоактивного изотопа йода диагностируют заболевания щитовидной железы на ранней стадии, раковые новообразования сначала облучают радиоактивным кобальтом, а затем уже удаляют больные ткани, заболевания легких распознают на ранней стадии благодаря флюорографии - моментальному рентгеновскому снимку.

Слайд 16

Кроме того, мы используем самую различную технику, которая, на первый взгляд, ничего не излучает, однако вокруг работающих холодильников, телевизоров, СВЧ-печей и другой бытовой аппаратуры образуются сильные переменные электромагнитные поля, т.е. электромагнитное излучение, которое также влияет на наш организм и вызывает изменения в нём

Слайд 17

Достаточно часто человек за год получает дозу, которая значительно превышает допустимую. Особенно эта опасность возросла в нашей стране после аварии на Чернобыльской АЭС, к нам попадают радиоактивно-заражённые продукты и материалы. Мы знаем, что радиоактивность - убийца невидимый, не вызывающи и болезненных реакций во время облучения, но проявляющийся потом, когда излечение уже невозможно.

Слайд 18

Одним из наиболее опасных противоречий современного мира является увеличивающийся разрыв между степенью развития технологий и уровнем жизнеобеспечения, культуры и морали основной части человечества. На этой основе возник технологический терроризм. Существуют национальные границы и национальные интересы, жёсткая экономическая и торговая конкуренция на мировых сырьевых и технологических рынках. Одним из опаснейших видов технологического терроризма является ядерный.

Посмотреть все слайды


Цели и задачи проекта. Из истории атомной энергетики. Реакция распада ядер урана. Термоядерный синтез. Синтез дейтерия и трития. Ядерный реактор. Схема кипящего ядерного реактора.Схема кипящего ядерного реактора. Схема работы кипящего ядерного реактора.Схема работы кипящего ядерного реактора. Атомная электростанция.Атомная электростанция. Польза атомной энергетики.Польза атомной энергетики. Вред атомной энергетики. Выводы по работе.


Цели и задачи проекта Атомная энергетика- имеет будущее и особенно в тех районах, где нет других источников энергии. Атомная электростанция (АЭС) комплекс технических сооружений, предназначенных для выработки электрической энергии путём использования энергии, выделяемой при контролируемой ядерной реакции.


Первое явление из области ядерной физики было открыто в 1896 г. Анри Беккерелем. Это естественная радиоактивность солей урана, проявляющаяся в самопроизвольном испускании невидимых лучей, способных вызывать ионизацию воздуха и почернение фотоэмульсий. Ядерная природа радиоактивности была понята Резерфордом после того, как в 1911 г. он предложил ядерную модель атома и установил, что радиоактивные излучения возникают в результате процессов, происходящих внутри атомного ядра. Цепная реакция была впервые осуществлена в декабре 1942 года. Группа физиков Чикагского университета, возглавляемая Э. Ферми, создала первый в мире ядерный реактор. Он состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. В СССР теоретические и экспериментальные исследования особенностей пуска, работы и контроля реакторов были проведены группой физиков и инженеров под руководством академика И. В. Курчатова. Первый советский реактор Ф-1 был выведен в критическое состояние 25 декабря 1946 года. В 1949 году введён в действие реактор по производству плутония, а 27 июня 1954 года вступила в строй первая в мире атомная электростанция электрической мощностью 5 МВт в г. Обнинске. Первое явление из области ядерной физики было открыто в 1896 г. Анри Беккерелем. Это естественная радиоактивность солей урана, проявляющаяся в самопроизвольном испускании невидимых лучей, способных вызывать ионизацию воздуха и почернение фотоэмульсий. Ядерная природа радиоактивности была понята Резерфордом после того, как в 1911 г. он предложил ядерную модель атома и установил, что радиоактивные излучения возникают в результате процессов, происходящих внутри атомного ядра. Цепная реакция была впервые осуществлена в декабре 1942 года. Группа физиков Чикагского университета, возглавляемая Э. Ферми, создала первый в мире ядерный реактор. Он состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. В СССР теоретические и экспериментальные исследования особенностей пуска, работы и контроля реакторов были проведены группой физиков и инженеров под руководством академика И. В. Курчатова. Первый советский реактор Ф-1 был выведен в критическое состояние 25 декабря 1946 года. В 1949 году введён в действие реактор по производству плутония, а 27 июня 1954 года вступила в строй первая в мире атомная электростанция электрической мощностью 5 МВт в г. Обнинске. Из истории атомной энергетики


Реакция распада ядер урана В 1939 году экспериментально выяснили, что при попадании нейтрона внутрь ядра атома урана-235 происходит его деление на два или три осколка с последующим выделением 6-9 нейтронов. Процесс может происходить сам по себе, охватывая все больше количество ядер урана-235. Данный процесс называют цепной ядерной реакцией. Процесс происходит с выделением большого количества энергии: при распаде одного ядра урана-235 происходит выделение 200 МэВ энергии, а при распаде 1 кг в 2,5 млн раз больше, чем при сжигании 1 кг каменного угля. Цепная реакция после распада одного изотопа урана возможна лишь при том случае, если его количество больше определенного значения критической массы, так как ядра урана малы и вероятность, что нейтроны попадут в них, невелика.


Термоядерный синтез Термоядерная реакция это реакция слияния легких ядер при очень высокой температуре. Термоядерные реакции основной источник солнечной энергии, лежат в основе водородной бомбы. При обычной температуре слияние ядер невозможно, так как ядра испытывают огромные силы отталкивания. Для синтеза легких ядер необходимо сблизить их на маленькое расстояние, на котором действие сил притяжения будет превышать силы отталкивания. Для слияния ядер, нужно увеличить их кинетическую энергию. Это достигается повышением температуры. В результате увеличивается подвижность ядер, и они могут сблизиться на такие расстояния, что под действием сил сцепления сольются в новое ядро. В результате слияния легких ядер освобождается большая энергия, так как образовавшееся новое ядро имеет большую удельную энергию связи, чем исходные ядра.


Ядерный реактор Ядерный реактор это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Составными частями любого Я. р. являются: активная зона с ядерным топливом, обычно окруженная отражателем нейтронов, теплоноситель, система регулирования цепной реакции, радиационная защита, система дистанционного управления. Основной характеристикой Я. р. является его мощность, измеряемая в киловаттах.








В отличие от тепловых электростанций, атомные не зависят от источников топлива. Например, кол-во тепла от 1 грамма урана равна теплоте сгорания 2,5 тонн нефти. АЭС не имеют нужды в транспорте(ТЭС нужно подвозить уголь, мазут или газ, ГЭС стоят только на крупных реках). АЭС имеют больше возможностей в производстве энергии. При необходимости можно просто достроить реактор. Но АЭС дороги в постройке, требуют квалификации работников и точно настроенных приборов. В отличие от ТЭЦ,АЭС в городе не построить, и использовать как котельные их нельзя.
Вред атомной энергетики Существует несколько основных проблем, связанных с ядерной энергетикой, прежде всего опасность загрязнения окружающей среды. На сегодняшний день нигде в мире не решена, и возможно является фундаментально нерешаемой, проблема захоронения радиоактивных отходов. Радиоактивные отходы при закапывании отравляют почву и разносятся грунтовыми водами. Жидкие и газовые- воду и воздух соответственно. Хранить их можно только в специальных хранилищах, каковых мало и каких у нас в России больше не строят. При аварии на АЭС в воздух, воду и почву будет выброшено столько радиоактивных изотопов, что последствия будут ужасными,если она не взорвется, как ядерная бомба.
Как видите, атомные электростанции, в отличие от тепловых и гидравлических, оказывают меньшее воздействие на окружающую среду, находясь в обычном рабочем состоянии, себестоимость энергии невысока(особенно после того, как станция окупит себя), независимость от источников топлива. Особенно это важно в труднодоступных местах севера РФ, где нет крупных рек и возможности строить ТЭС и ГЭС. Но АЭС дороги в постройке, требуют квалификации работников, точных приборов, а если на станции случится авария, мало не покажется

...Электроэнергия без вреда экологии: миф или реальность? Вред и польза аэс

Устройство атомных электростанций. Вред и польза (Балаковская АЭС)

Принцип работы аЭС

Мировая атомная энергетика.

Российские АЭС.

  • Балаковская

  • Белоярская

  • Волгодонская

  • Калининская

  • Кольская

  • Курская

  • Ленинградская

  • Нововоронежская

  • Смоленская

Балаковская Атомная.

Балаковская Атомная.

технические характеристики.

История Балаковской атомной.

  • 12 мая 1993 г – 4 энергоблок.

Достоинства атомных станций:

Недостатки атомных станций:

Используемые ресурсы:

  • Буклет Балаковская АЭС

rpp.nashaucheba.ru

насколько он реален? Как работают АЭС? Насколько опасен данный вид добычи электроэнергии?

Катастрофы всегда пугают своими последствиями, одна только мысль о возможном повторении вгоняет в страх. Но что если все меры по предотвращению подобных инцидентов создадут ещё больше проблем? И речь идёт не о терроризме, как можно было подумать.

Атомная энергетика – положение дел

Во всём мире на 2015 год существовала 191 атомная электростанция, все они обеспечивали 10% от мировой потребности в электроэнергии. Правда, процент рассчитывается и с учётом стран, в которых АЭС никогда не было.

Франция, Украина и Словакия входят в тройку лидеров, в плане обеспечения собственных потребностей в электроэнергии за счёт атомных станций. От 50 до 75%, что впечатляет, учитывая низкую себестоимость производства и определённые сложности с эксплуатацией.

В России лишь немногим более 20% от потребляемой энергии вырабатывается на АЭС, перспективы для развития в этом направлении имеются.

Самым громким случаем стал отказ от строительства новых станций в Японии, после событий на Фукусиме. Но в последние несколько лет японцы начали снова наращивать количество добываемой таким способом энергии, ввиду незавидного положения с полезными ископаемыми.

Страх перед последствиями отходит на второй план, когда есть вполне реальная потребность, которую необходимо удовлетворять, любым способом.

Чем страшна авария на АЭС?

Когда речь идёт о подобных катастрофах, все вспоминают Чернобыль и Фукусиму. На самом деле, аварий было не меньше десятка, но лишь две имели столь серьёзные последствия для экологии, жизни людей и экономики стран. Любой выброс радиоактивного вещества влечёт за собой:

  1. Загрязнение окружающей территории активными изотопами, распадающимися в течение тысяч или даже миллионов лет;
  2. Последствия для соседних стран, за счёт осадков и морских течений;
  3. Повышение уровня заболеваемости онкологией на сотни километров вокруг;
  4. Риск гибели сотрудников станции и ликвидаторов;
  5. Прекращение работы станции и энергетический коллапс.

Каждый, кто знает, что недалеко от его города расположена АЭС, хоть раз и задумывался, не произойдёт ли чего плохого? В случае катастрофы паника возможна даже в удалённых городах, каждый будет переживать за своё здоровье, и пытаться выяснить, как далеко могут распространиться радиоактивные элементы за счёт попутного ветра и прочих природных явлений.

Особого страха могло бы и не быть, если бы не печальный опыт. Каждый, кто хоть раз обжёгся, будет обходить стороной печи, плиты и прочие раскалённые предметы. Такие настроения активно используются политиками, для манипуляции общественным мнением и достижением своих целей.

Как работают атомные электростанции?

Многие не особо понимают, как работает атомная электростанция, и переживают уже от одного этого момента.

В общих чертах это можно объяснить так:

  • Имеется активная зона, в которой за счёт радиоактивных элементов вырабатывается тепло;
  • Теплоноситель передаёт его воде, находящейся в отдельном резервуаре;
  • Дойдя до температуры кипения, жидкость начинает вращать турбину;
  • Движение турбины обеспечивает накопление заряда в генераторе и дальнейшее распространение электричества;
  • Пар конденсируется в воду, которая возвращается в водохранилище и повторно используется.

Может показаться, что таким образом загрязняется вода, но это не так. Жидкость не контактирует ни с чем радиоактивным, в водоём она возвращается в «первозданном виде». Разве что, становится чуть теплее, что является единственным видом загрязнения, которое оказывают станции – тепловым.

В остальном – станция абсолютно безопасна, пока работает в штатном режиме и не нарушается технологический процесс. С точки зрения экологии, она не причиняет никакого вреда, в отличие от ТЭЦ.

Реальная опасность АЭС

Почему же мы отказались от массового использования АЭС и не перешли на новый вид энергии? Как же «мирный атом в каждый дом» и прочие громкие лозунги? Всё дело в общественном мнении и страхе перед последствиями.

Загрязнение радиоактивными изотопами опасно тем, что территория, на которой произошла катастрофа, будет недоступна для человека на протяжении десятилетий, если не веков. Примером тому является Чернобыль, с его зоной – катастрофа произошла в прошлом столетии, но до сих пор никто всерьёз не обсуждает возможность возвращения человека в Припять и на близлежащие территории.

Почти все аварии произошли в момент тестирования нового механизма или внесения поправок в производственный процесс. Поддержание работоспособности АЭС, при неукоснительном соблюдении всех разработанных инструкций – не самая сложная задача. Но речь идёт о 191 станции и более 400 блоков, которые функционируют постоянно, без перерывов и выходных. На такой длинной дистанции ошибка оного человека может иметь серьёзные последствия для всей энергетики, что уже говорить об экологии и жизнях сотен тысяч людей.

Энергия атома в мире

В прошлом веке фантасты мечтали о том, что в каждом бытовом приборе будет миниатюрный атомный двигатель, по типу батарейки. К сожалению или к счастью, подобные смелые надежды не оправдались, существует не более двухсот АЭС и ни одна страна в мире не обеспечивает все свои потребности за счёт этого вида энергии.

Касательно использования ТЭЦ вместо атомных станций – здесь есть некоторые проблемы. Мы не сможем назвать ни одной серьёзной катастрофы, произошедшей в связи со сжиганием угля. Но живя неподалёку от таких «источников энергии», о природе думать очень сложно. Мешает постоянный дым и радиационный фон.

Да, при сжигании угля активируются радиоактивные изотопы, которые в качестве примесей находились в ископаемых ресурсах. Даже по этому параметру АЭС обходят своих ближайших конкуренток.

Кстати, перспектива атомной энергетики напрямую зависит от цен на нефть. Чем ниже этот показатель, тем доступнее «чёрное золото» и прочие углеродные энергоносители. В таких условиях, нет смысла развивать более «опасное» направление, когда можно получить много дешёвой энергии, получая единственный необходимый ресурс по нефтепроводу.

Страх толкает людей на необдуманные и бессмысленные поступки. Одним из таких является отказ от атомной энергетики и дальнейшее загрязнение окружающей среды.

Видео про аварии на АЭС

В данном ролике Тимур Сычев расскажет про 7 аварий на атомных электростанциях, которые правительство тщательно скрывало, не допуская разглашения:

1-vopros.ru

...Электроэнергия без вреда экологии: миф или реальность? | Вопрос-Ответ

Развитая энергетика – это фундамент для будущего прогресса цивилизации. Если на заре мировой и отечественной энергетической отрасли ставку делали на получение максимума электроэнергии для промышленности, то сегодня на первый план вышел вопрос о влиянии электростанций на окружающую среду и человека. Современная энергетика наносит значимый вред природе, и странам приходится делать непростой выбор между тепловыми, атомными и гидроэлектростанциями.

Тепловые электростанции – «привет» из прошлого

В начале 20 века в нашей стране ставку сделали именно на тепловые электростанции. На тот момент плюсов у них было достаточно, а о влиянии такого вида производства энергии на окружающую среду задумывались мало. ТЭС работают на дешевом топливе, которым богата Россия, да и их сооружение стоит не так дорого по сравнению со строительством ГЭС или АЭС. ТЭС не требуют больших площадей и их можно строить в любой местности. Последствия технологических аварий на тепловых станциях не так разрушительны, как на других электростанциях.

Доля ТЭС в отечественной энергосистеме самая большая: в 2011 году на тепловых станциях России было выработано 67,8% (это 691 млрд. кВт*ч) от всей энергии в стране. Между тем, тепловые электростанции наносят самый значимый ущерб окружающей среде по сравнению с другими электростанциями.

Ежегодно тепловые электростанции выбрасывают в атмосферу огромное количество отходов. Согласно госдокладу «О состоянии и об охране окружающей среды РФ в 2010 году», самыми крупными источниками выбросов загрязняющих веществ в атмосферный воздух стали именно ГРЭС – крупные тепловые электростанции. Только за 2010 год 4 ГРЭС, принадлежащие ОАО «Энел ОГК-5», – Рефтинская, Среднеуральская, Невинномысская и Конаковская ГРЭС – выбросили в атмосферу 410 360 тонн загрязняющих веществ.


При сжигании ископаемого топлива образуются продукты сгорания, содержащие оксид азота, серный и сернистый ангидрид, частички несгоревшего пылевидного топлива, летучую золу и газообразные продукты неполного сгорания. При сжигании мазута образуются соединения ванадия, кокс, соли натрия, частицы сажи, а в выбросах угольных ТЭС присутствуют окислы алюминия и кремния. И все тепловые электростанции, независимо от используемого топлива, выбрасывают колоссальные количества углекислого газа, вызывающего глобальное потепление.

Газ значительно удорожает стоимость электроэнергии, но при его сжигании не образуется зола. Правда в атмосферу также попадают окись серы и оксиды азота, как и при сжигании мазута. А ТЭС нашей страны, в отличие от зарубежных, не оснащены эффективными системами очистки уходящих газов. В последние годы в этом направлении ведется серьезная работа: реконструируются котлоагрегаты и золоулавливающие установки, электрофильтры, внедряются автоматизированные системы экологического мониторинга выбросов.

Достаточно остро стоит вопрос нехватки качественного топлива для ТЭС. Многие станции вынуждены работать на топливе низкого качества, при сгорании которого в атмосферу вместе с дымом попадает большое количество вредных веществ.

Главная проблема угольных ТЭС – это золоотвалы. Они не только занимают значительные территории, но и являются очагами скопления тяжелых металлов и обладают повышенной радиоактивностью.

Более того, тепловые электростанции сбрасывают в водоемы тёплую воду и этим загрязняют их. Как следствие, нарушение кислородного баланса и зарастание водорослями, что несет угрозу ихтиофауне. Загрязняют водоемы и сточные производственные воды ТЭС, которые содержат нефтепродукты. При том на ТЭС, работающих на жидком топливе, сбросы производственных вод выше.

Несмотря на относительную дешевизну ископаемого топлива, оно все же является невосполнимым природным ресурсом. Основными энергетическими ресурсами в мире являются уголь (40%), нефть (27%) и газ (21%) и по некоторым оценкам, при нынешних темпах потребления мировых запасов хватит на 270, 50 и 70 лет соответственно.

ГЭС – «укрощенная» стихия

Укрощать водную стихию начали еще в конце 19 века, а масштабная стройка ГЭС по всей стране совпала с развитием промышленности и освоением новых территорий. Строительство ГЭС не только решало вопрос обеспечения электроэнергией новых производств, но и улучшало условия судоходства и мелиорации.

Маневренные возможности ГЭС помогают оптимизировать работу энергосистемы, позволяя тепловым электростанциям работать в оптимальном режиме с минимальными затратами топлива и минимальными выбросами на каждый произведенный киловатт-час электроэнергии.


Источник фото: russianlook.com

Одно из главных преимуществ гидроэнергетики в том, что она наносит меньший ущерб окружающий среде по сравнению с другими электростанциями. ГЭС не используют топливо, значит, вырабатываемая ими электроэнергия стоит значительно дешевле, ее стоимость не зависит от колебаний цен на нефть или уголь, а производство энергии не сопровождается загрязнением атмосферы и вод. Выработка электроэнергии на ГЭС обеспечивает ежегодную экономию 50 млн. тонн условного топлива. Потенциал экономии составляет 250 млн. тонн.

Вода – это возобновляемый источник электроэнергии и в отличие от ископаемого топлива, ее можно использовать несчитанное количество раз. Гидроэнергетика – самый развитый вид возобновляемых источников энергии, она способна обеспечивать энергией целые регионы. Еще один плюс, так как ГЭС не сжигают топливо, нет дополнительных затрат по утилизации и захоронению отходов.

В то же время ГЭС имеет и ряд недостатков с точки зрения экологии. При строительстве ГЭС на равнинных реках приходится затапливать большие территории пахотных земель. Создание водохранилищ существенно меняет экосистему, что отражается не только на ихтиофауне, но и на животном мире. Правда, как отмечают некоторые экологи, при реализации комплекса природоохранных мероприятий через несколько десятилетий возможно восстановление экосистемы.

АЭС – энергия будущего?

Ядерная энергия была открыта сравнительно недавно, а первая в мире атомная станция заработала в 1954 году в Обнинске. Сегодня атомная промышленность развивается активными темпами, однако трагедия на Фукусиме заставила многие страны пересмотреть свои взгляды на будущее АЭС.

В отечественной энергосистеме на долю АЭС приходится небольшая часть производимой энергии. В 2011 году на АЭС страны произвели 172,9 млрд. кВт*ч, что составляет всего 16,9%. Тем не менее у госкорпорации «Росатом» серьезные планы по развитию атомной промышленности в России и за ее пределами.

Атомные станции, несмотря на высокую стоимость строительства, экономически выгодны: производимая ими электроэнергия относительно дешевая. Да и с точки экологии у АЭС есть ряд преимуществ.


Источник фото: russianlook.com

АЭС не выбрасывают в атмосферу золу и другие опасные вещества, образующиеся в результате сжигания топлива. Основная доля выбросов загрязняющих веществ в атмосферу приходится на пускорезервные котельные, котельные профилакториев и периодически включаемые резервные дизельгенераторные станции. По данным госдоклада, в 2010 году все атомные станции страны выбросили в атмосферу всего 1559 тонн загрязняющих веществ (для сравнения, приведенные выше 4 ГРЭС выбросили 410 360 тонн). Доля АЭС в общем объеме выбросов загрязняющих веществ в атмосферный воздух всеми предприятиями страны уже на протяжении многих лет – менее 0,012%.

Запасов ядерного топлива – урана – значительно больше, чем других видов топлива. Россия обладает 8,9% от разведанных резервов урана в мире, находясь в общем списке на четвёртом месте.

Но, несмотря на очевидные плюсы, такие страны как Германия, Швейцария, Италия, Япония и ряд других отказались от атомной энергетики. В Германии доля АЭС в энергосистеме – 32%, но к 2022 году будет отключена последняя станция в стране. Главная причина – это безопасность АЭС для окружающей среды и населения. Мирный атом в одно мгновение может стать виновником гибели и тяжелых болезней миллионов людей и животных, и нанести непоправимый ущерб окружающей среде. Катастрофические последствия аварий на АЭС сразу перечеркивают все указанные преимущества.

Более того, при эксплуатации ядерных реакторов образуются радиоактивные отходы, которые необходимо хранить сотни тысяч лет, пока они не станут более-менее безопасными для окружающей среды. И в мире еще не найдено решение, как сделать их хранение безопасным. Часть ядерных отходов направляется на переработку (регенерацию) с частичным извлечением урана и плутония для последующего использования (но в результате переработки образуются новые отходы, по объему превышающие изначальное количество отходов в тысячи раз), или на захоронение в земле. Небезупречен с экологической точки зрения и процесс добычи урана, а также его превращения в ядерное топливо.

Стоит отметить, что даже на исправно работающих АЭС часть радиоактивного материала попадает в воздух и воду. И пусть это небольшие дозы, но какое влияние они окажут на окружающую среду в долгосрочной перспективе, предугадать сложно.

Прогресс не стоит на месте и сложно точно сказать, какой будет энергетика будущего. Но надо понимать, что энергетика, равно как и любая другая деятельность человека, оказывает в определенной мере негативное влияние на окружающую среду. И избежать его полностью, к сожалению, невозможно. Но вполне реально приложить все усилия, чтобы минимизировать ущерб, наносимый природе. Например, выбирать те технологии (пусть и дорогостоящие), которые наиболее безопасны для окружающей среды. Так, гидроэнергетика, которая единственная в таких масштабах использует возобновляемый источник энергии – воду – несмотря на ряд недостатков с точки зрения экологии, приносит все же минимальный ущерб окружающей среде по сравнению с другими электроэнергетическими объектами.

www.aif.ru

Ядерная (Атомная) энергия – Применение и использование энергии атомного ядра, ядерной реакции, источников энергии; Проблемы безопасности, развития и получения ядерной энергии, значение открытия и взрыв атомной бомбы. Плюсы и минусы, польза и вред ядерной энергетики на greensource.ru

20 11 2016 greenman Пока нет комментариев

Применение атомной энергии

Применение ядерной энергии в современном мире оказывается настолько важным, что если бы мы завтра проснулись, а энергия ядерной реакции исчезла, мир, таким как мы его знаем, пожалуй, перестал бы существовать. Мирное использование источников ядерной энергии составляет основу промышленного производства и жизни таких стран, как Франция и Япония, Германия и Великобритания, США и Россия. И если две последние страны еще в состоянии заместить ядерные источники энергии на тепловые станции, то для Франции, или Японии это попросту невозможно.

Использование атомной энергии создает много проблем. В основном все эти проблемы связаны с тем, что используя себе на благо энергию связи атомного ядра (которую мы и называем ядерной энергией), человек получает существенное зло в виде высокорадиоактивных отходов, которые нельзя просто выбросить. Отходы от атомных источников энергии требуется перерабатывать, перевозить, захоранивать, и хранить продолжительное время в безопасных условиях.

Плюсы и минусы, польза и вред от использования ядерной энергии

Рассмотрим плюсы и минусы применения атомной-ядерной энергии, их пользу, вред и значение в жизни Человечества. Очевидно, что атомная энергия сегодня нужна лишь промышленно развитым странам. То есть, основное применение мирная ядерная энергия находит в основном, на таких объектах, как заводы, перерабатывающие предприятия, и т.п. Именно энергоемкие производства, удаленные от источников дешевой электроэнергии (вроде гидроэлектростанций) задействуют ядерные станции для обеспечения и развития своих внутренних процессов.

Аграрные регионы и города не слишком нуждаются в атомной энергии. Ее вполне можно заместить тепловыми и другими станциями. Получается, что овладение, получение, развитие, производство и использование ядерной энергии по большей части направлено на удовлетворение наших потребностей в промышленной продукции. Посмотрим, что это за производства: автомобильная промышленность, военные производства, металлургия, химическая промышленность, нефтегазовый комплекс, и т.д.

Современный человек хочет ездить на новой машине? Хочет одеваться в модную синтетику, кушать синтетику и упаковывать все в синтетику? Хочет ярких товаров разных форм и размеров? Хочет все новых телефонов, телевизоров, компьютеров? Хочет много покупать, часто менять оборудование вокруг себя? Хочет вкусно питаться химической едой из цветных упаковок? Хочет жить спокойно? Хочет слышать сладкие речи с телеэкрана? Хочет, чтобы танков было много, а также ракет и крейсеров, а еще снарядов и пушек?

И он все это получает. Неважно, что в конце расхождение между словом и делом приводит к войне. Неважно, что для его утилизации также нужна энергия. Пока что человек спокоен. Он ест, пьет, ходит на работу, продает и покупает.

А для всего этого нужна энергия. А еще для этого нужно очень много нефти, газа, металла и т.п. И все эти промышленные процессы нуждаются в атомной энергии. Поэтому кто бы что ни говорил, до тех пор, пока не будет запущен в серию первый промышленный реактор термоядерного синтеза, атомная энергетика будет только развиваться.

В плюсы ядерной энергии мы можем смело записать все то, к чему мы привыкли. К минусам – печальную перспективу скорой смерти в коллапсе исчерпания ресурсов, проблемах ядерных отходов, росте численности населения и деградации пахотных площадей. Иначе говоря, атомная энергетика позволила человеку еще сильнее начать овладевать природой, насилуя ее сверх меры настолько, что он за несколько десятилетий преодолел порог воспроизводства основных ресурсов, запустив между 2000 и 2010 годами процесс схлопывания потребления. Этот процесс объективно уже не зависит от человека.

Всем придется меньше есть, меньше жить и меньше радоваться окружающей природе. Здесь кроется еще один плюс-минус атомной энергии, который заключается в том, что страны, овладевшие атомом, смогут эффективнее перераспределять под себя скудеющие ресурсы тех, кто атомом не овладел. Более того, только развитие программы термоядерного синтеза позволит человечеству элементарно выжить. Теперь поясним на пальцах, что же это за «зверь» - атомная (ядерная) энергия и с чем ее едят.

Масса, материя и атомная (ядерная) энергия

Часто приходится слышать утверждение, что «масса и энергия одно и то же», или же такие суждения, будто выражение Е=mс2 объясняет взрыв атомной (ядерной) бомбы. Сейчас, когда вы получили первое представление о ядерной энергии и ее применении, было бы поистине неразумно сбивать вас с толку такими утверждениями, как «масса равна энергии». Во всяком случае, такой способ трактовки великого открытия не из лучших. По-видимому, это всего лишь острословие молодых реформистов, «Галилеев нового времени». На деле же предсказание теории, которое проверено многими экспери-ментами, говорит лишь о том, что энергия имеет массу.

Сейчас мы разъясним современную точку зрения и дадим небольшой обзор истории ее развития.Когда энергия любого материального тела возрастает, его масса увеличивается, и мы приписываем эту дополнительную массу приросту энергии. Например, при поглощении излучения поглотитель становится горячее и его масса возрастает. Однако возрастание настолько мало, что остается за пределами точности измерений в обычных опытах. Напротив, если вещество испускает излучение, то оно теряет капельку своей массы, которая уносится излучением. Возникает более широкий вопрос: не обусловлена ли вся масса вещества энергией, т. е. не заключен ли во всем веществе громадный запас энергии? Много лет назад радиоактивные превращения на это ответили положительно. При распаде радиоактивного атома выделяется огромное количество энергии (в основном в виде кинетической энергии), а малая часть массы атома исчезает. Об этом ясно говорят измерения. Таким образом, энергия уносит с собой массу, уменьшая тем самым массу вещества.

Следовательно, часть массы вещества взаимозаменяема массой излучения, кинетической энергией и т. п. Вот почему мы говорим: «энергия и вещество способны частично к взаимным превращениям». Более того, мы теперь можем создавать частицы вещества, которые обладают массой и способны полностью превращаться в излучение, также имеющее массу. Энергия этого излучения может перейти в другие формы, передав им свою массу. И наоборот, излучение способно превращаться в частицы вещества. Так что вместо «энергия обладает массой» мы можем сказать «частицы вещества и излучение - взаимопревращаемы, а потому способны к взаимным превращениям с другими формами энергии». В этом и состоит создание и уничтожение вещества. Такие разрушительные события не могут происходить в царстве обычной физики, химии и техники, их следует искать либо в микроскопических, но активных процессах, изучаемых ядерной физикой, либо в высокотемпературном горниле атомных бомб, на Солнце и звездах. Однако было бы неразумно утверждать, что «энергия - это масса». Мы говорим: «энергия, как и вещество, имеет массу».

Масса обычного вещества

Мы говорим, что масса обычного вещества таит в себе огромный запас внутренней энергии, равной произведению массы на (скорость света)2. Но эта энергия заключена в массе и не может быть высвобождена без исчезновения хотя бы части ее. Как возникла столь удивительная идея и почему она не была открыта раньше? Ее предлагали и раньше - эксперимент и теория в разных видах,- но вплоть до двадцатого века изменение энергии не наблюдали, ибо в обычных экспериментах оно соответствует невероятно малому изменению массы. Однако сейчас мы уверены, что летящая пуля благодаря своей кинетической энергии имеет дополнительную массу. Даже при скорости 5000 м/сек пуля, которая в покое весила ровно 1 г, будет иметь полную массу 1,00000000001 г. Раскаленная добела платина массой 1 кг всего прибавит 0,000000000004 кг и практически ни одно взвешивание не сможет зарегистрировать эти изменения. Только когда из атомного ядра высвобождаются огромные запасы энергии или когда атомные «снаряды» разгоняются до скорости, близкой к скорости света, масса энергии становится заметной.

С другой стороны, даже едва уловимая разница масс знаменует возможность выделения огромного количества энергии. Так, атомы водорода и гелия имеют относительные массы 1,008 и 4,004. Если бы четыре ядра водорода смогли объединиться в одно ядро гелия, то масса 4,032 изменилась бы до 4,004. Разница невелика, всего 0,028, или 0,7%. Но она означала бы гигантское выделение энергии (преимущественно в виде излучения). 4,032 кг водорода дали бы 0,028 кг излучения, которое имело бы энергию около 600000000000 Кал.

Сравните это с 140 000 Кал, выделяющимися при соединении того же количества водорода с кислородом в химическом взрыве.Обычная кинетическая энергия дает заметный вклад в массу очень быстрых протонов, получаемых на циклотронах, и это создает трудности при работе с такими машинами.

Почему мы все же верим, что Е=mс2

Сейчас мы воспринимаем это как прямое следствие теории относительности, но первые подозрения возникли уже ближе к концу 19 века, в связи со свойствами излучения. Тогда казалось вероятным, что излучение обладает массой. А поскольку излучение переносит, как на крыльях, со скоростью с энергию, точнее, само есть энергия, то появился пример массы, принадлежащей чему-то «невещественному». Экспериментальные законы электромагнетизма предсказывали, что электромагнитные волны должны обладать «массой». Но до создания теории относительности только необузданная фантазия могла распространить соотношение m=Е/с2 на другие формы энергии.

Всем сортам электромагнитного излучения (радиоволнам, инфракрасному, видимому и ультрафиолетовому свету и т. д.) свойственны некоторые общие черты: все они распространяются в пустоте с одинаковой скоростью и все переносят энергию и импульс. Мы представляем себе свет и другое излучение в виде волн, распространяющихся с большой, но определенной скоростью с=3*108 м/сек. Когда свет падает на поглощающую поверхность, возникает теплота, показывающая, что поток света несет энергию. Эта энергия должна распространяться вместе с потоком с той же скоростью света. На деле скорость света именно так и измеряется: по времени пролета порцией световой энергии большого расстояния.

Когда свет падает на поверхность некоторых металлов, он выбивает электроны, вылетающие точно так же, как если бы их ударил компактный шарик. Энергия света, по всей видимости, распространяется концентрированными порциями, которые мы называем «квантами». В этом и заключается квантовый характер излучения, несмотря на то, что эти порции, по-видимому, создаются волнами. Каждая порция света с одной и той же длиной волны обладает единой и той же энергией, определенным «квантом» энергии. Такие порции мчатся со скоростью света (собственно, они-то и есть свет), перенося энергию и количество движения (импульс). Все это позволяет приписать излучению некую массу - каждой порции приписывается определенная масса.

При отражении света от зеркала теплота не выделяется, ибо отраженный луч уносит всю энергию, но на зеркало действует давление, подобное давлению упругих шариков или молекул. Если же вместо зеркала свет попадает на черную поглощающую поверхность, давление становится вдвое меньше. Это свидетельствует о том, что луч несет количество движения, поворачиваемое зеркалом. Следовательно, свет ведет себя так, как если бы у него была масса. Но можно ли откуда-то еще узнать, что нечто обладает массой? Существует ли масса по своему собственному праву, как, например, длина, зеленый цвет или вода? Или это искусственное понятие, определяемое поведением наподобие Скромности? Масса, на самом деле, известна нам в трех проявлениях:

  • А. Туманное утверждение, характеризующее количество «вещества», (Масса с этой точки зрения присуща веществу - сущности, которую мы можем увидеть, потрогать, толкнуть).
  • Б. Определенные утверждения, увязывающие ее с иными физическими величинами.
  • В. Масса сохраняется.

Остается определить массу через количество движения и энергию. Тогда любая движущаяся вещь с количеством движения и энергией должна иметь «массу». Ее массой должно быть (количество движения)/(скорость).

Теория относительности

Стремление увязать воедино серию экспериментальных парадоксов, касающихся абсолютного пространства и времени, породило теорию относительности. Два сорта экспериментов со светом давали противоречивые результаты, а опыты с электричеством еще больше обострили этот конфликт. Тогда Эйнштейн предложил изменить простые геометрические правила сложения векторов. Это изменение и составляет сущность его «специальной теории относительности».

Для малых скоростей (от медлительной улитки до быстрейшей из ракет) новая теория согласуется со старой.При высоких скоростях, сравнимых со скоростью света, наше измерение длин или времени модифицируется движением тела относительно наблюдателя, в частности масса тела становится тем больше, чем быстрее оно движется.

Затем теория относительности провозгласила, что это увеличение массы носит совершенно общий характер. При обычных скоростях никаких изменений нет, и только при скорости 100 000 000 км/час масса возрастает на 1%. Однако для электронов и протонов, вылетающих из радиоактивных атомов или современных ускорителей, оно достигает 10, 100, 1000%…. Опыты с такими высокоэнергетическими частицами великолепно подтверждают соотношение между массой и скоростью.

На другом краю находится излучение, не имеющее массы покоя. Это не вещество и его нельзя удержать в покое; оно просто имеет массу, и движется со скоростью с, так что его энергия равна mс2. О квантах, мы говорим как о фотонах, когда хотим отметить поведение света как потока частиц. Каждый фотон имеет определенную массу m, определенную энергию Е=mс2 и количество движения (импульс).

Ядерные превращения

В некоторых экспериментах с ядрами массы атомов после бурных взрывов, складываясь, не дают ту же самую полную массу. Освобожденная энергия уносит с собой и какую-то часть массы; кажется, что недостающая часть атомного материала исчезла. Однако если мы припишем измеренной энергии массу Е/с2, то обнаружим, что масса сохраняется.

Аннигиляция вещества

Мы привыкли думать о массе как о неизбежном свойстве материи, поэтом переход массы из вещества в излучение - от лампы к улетающему лучу света выглядит почти как уничтожение вещества. Еще один шаг - и мы с удивлением обнаружим то, что происходит на самом деле: положительный и отрицательный электроны, частички вещества, соединившись вместе, полностью превращаются в излучение. Масса их вещества превращается в равную ей массу излучения. Это случай исчезновения вещества в самом буквальном смысле. Как в фокусе, во вспышке света.

Измерения показывают, что (энергия, излучения при аннигиляции)/ с2 равна полной массе обоих электронов - положительного и отрицательного. Антипротон, соединяясь с протоном, аннигилирует, обычно с выбросом более легких частиц с большой кинетической энергией.

Создание вещества

Сейчас, когда мы научились распоряжаться высокоэнергетическим излучением (сверхкоротковолновыми рентгеновскими лучами), мы можем приготовить из излучения частицы вещества. Если такими лучами бомбардировать мишень, они дают иногда пару частиц, например положительный и отрицательный электроны. И если снова воспользоваться формулой m=Е/с2 как для излучения, так и для кинетической энергии, то масса будет сохраняться.

Просто о сложном – Ядерная (Атомная) энергия

  • Галерея изображений, картинки, фотографии.
  • Ядерная энергия, энергия атома – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Ядерная энергия, энергия атома.
  • Ссылки на материалы и источники – Ядерная (Атомная) энергия.

greensource.ru

Здоровье и АЭС

Сколько сломано копий на вопросах по развитию атомной энергетики. Стоит где-нибудь в мире начать строительство АЭС, как сразу партии и общественные объединения выступают за закрытие станций и прекращение строительства. Так, так ли уж опасны и не экологичны атомные электростанции?

Как известно, электроэнергия, это основной источник энергии для человечества. Получают ее на основных станциях – ГЭС, ТЭЦ, АЭС. Но больше всего страха вызывают АЭС.

Если разобраться, то самую дешевую электроэнергию получают на атомных электростанциях. Самая дорогая электроэнергия на тепловых, работающих на угле. Организации, которые борются с атомными станциями, как правило, прекращают свои выступления, когда речь заходит о том, что на данном месте будет строиться тепловая станция. Но вот в чем вопрос. ТЭЦ на угле, выбрасывает столько вредных выбросов, что о хорошей экологической ситуации рядом с ТЭЦ не может идти и речи. Никакие фильтры не спасают от угольной пыли. Одна станция сжигает за год сотни тысяч тон угля. А горы запасов угля возле нее, угольную пыль, прекрасно раздувают ветры по всей округе на многие километры. Станции на горючих сланцах тоже далеко не ушли. Даже станции на газу, также выбрасывают в атмосферу тонны СО. Но наибольший страх вызывает именно атомная электростанция. Причина тут естественно в Чернобыльской аварии и аварии в США. Правда там утечка была не значительна, по сравнению с Чернобыльской катастрофой. На станции произошел так называемый Китайский синдром. В принципе такая же авария, как и на Чернобыльской АЭС. Но с той лишь разницей, что в США, персоналу удалось взять реактор под контроль. Тем не менее, в 70-х годах, эта авария наделала много шума. Но так ли опасна АЭС? Как утверждают физики, АЭС вообще, на сегодняшний день наиболее экологически чистая станция. Конечно, есть альтернативные электростанции. Солнечные, волновые, ветровые. Но их процент в доли получения электроэнергии так не велик, что их до сих пор всерьез не берут в расчет.

А как же гидроэлектростанции? Оказалось, что они наносят вред не столько самому человеку, в плане выбросов, а наносят вред природе и рекам. Примером может служить станция в штате Пенджаб, построенная с помощью России. Как ни странно, но именно эти сооружения стали причиной ряда землетрясений в Индии. Так утверждают сейсмологи. Да и Асуанская плотина нанесла непоправимый вред огромным территориям в Египте и не только. Правда, это все выяснилось гораздо позже, после строительства.

А что же атомные электростанции?

Современные реакторы весьма надежны. Второго Чернобыля наверняка от новых реакторов ждать не приходиться. Чего не скажешь о старых станциях. Но вот куда девать отработанное топливо? Это вопрос. Те хранилища и технологии по утилизации, скорее это «Привет от прадедов», для наших правнуков. Пока человечество их прячет в могильниках, сваливая проблему решения на будущие поколения. Но это, пожалуй, единственный отрицательный вопрос в полемике «За» и «Против» об АЭС. Если смотреть на вопрос шире, выбирать, между ТЭЦ и АЭС, то конечно по экологичности, АЭС даст фору любой ТЭЦ, с самыми надежными фильтрами. Но, тем не менее, из-за фобии, вызванной Чернобылем, граждане многих стран готовы вдыхать и наслаждаться выбросами ТЭЦ и котельных, умирать от заболеваний легких, онкологии вызванной канцерогенными веществами, содержащиеся в продуктах горения, чем разрешить строительство АЭС, с ее «страшной» радиацией.

Все, что не делается, значит кому-то это надо. Значит кому-то выгодно, что бы строились все новые ТЭЦ. Кому-то надо, что бы на них сжигались миллионами тон и кубометров ежегодно газ, уголь, сланцы, мазут. И кто-то кровно заинтересован, что бы не было отказа от этих станций в пользу АЭС. А уж как запугать население перспективой строительства АЭС, известно многим.

А вот интересный факт. Наиболее пострадало от Чернобыльской катастрофы Гомельская область Беларуси. За ней идет Брестская, Минска. Но, что интересно. Первое место по заболеваемости онкологическими заболеваниями держит уверенно Витебская область. Но ведь она менее всего пострадала от аварии на АЭС. Выступа Главврач Витебской области заявил, что пока установить причину такого высокого взлета заболеваемости не удается. А ведь совсем недавно, увеличение заболеваемости раком, напрямую увязывали с Чернобыльской катастрофой. Выходит не все так просто. В нашей жизни присутствуют еще столько отрицательных факторов, что искать причину своих болезней в только построенной АЭС просто глупо. Об этом говорит и статистика. А о вреде ТЭЦ давно говорят ученые. Но их, как правило, слушают в последнюю очередь.

Обсудить на форуме

vsezdorovo.com

Польза и вред атома | НОУ Колледж Мосэнерго

Ядерная энергия с ее возможностями выступает как атрибут современного цивилизованного общества, демонстрирует развитие общественной культуры и выступает одной из важнейших сфер в международных отношениях. Ядерная энергия влияет непосредственно на жизнедеятельность людей и ее основные компоненты в частности, а именно несомненна ее востребованность в науке и технике, политике, экономике, здравоохранении и защите окружающей среды, а также благополучия социума.

Прослеживается техногенный риск применения энергии атома во влиянии на общие данные показателей качества жизни, а именно среднюю продолжительность жизни, «цену жизни», качество жизни и экологическую ситуацию. В этой связи ведется работа по управлению теми факторами, которые связаны с использованием атома, направленная на снижение ее негативных воздействий.

Использование атома, бесспорно, имеет и свои положительные стороны, предоставляющие возможности для улучшения показателей жизни в целом. По политическим и экономическим причинам возникают споры, вызванные конфликтами заинтересованности имеющих влияние организаций международного уровня. Всплески радиофобии среди простого населения также сопровождают периодически случающиеся ядерные аварии.

В какой период обозначилось влияние радиации на жизнедеятельность людей?

В 1895 году Рентген открыл рентгеновское излучение, а чуть позже Беккерель обозначил существование естественной активности излучения. Изначально данные явления применялись в целях научных исследований и повышали знания и образованность, в том числе и в медицине. Так, Марией Складовской был создан аппарат для срочного рентгенологического исследования людей, получивших травмы. Ею создано не менее двухста рентгенологических установок, что привнесло большую пользу в медицину и лечение раненых.

Что случилось впоследствии?

Изначально ядерная энергия использовалась сугубо для науки, однако весьма скоро в прерогативе обозначилось ядерное оружие. Величайшие открытия и колоссальный скачок научно-технического прогресса благодаря открытиям в этой области вывели человечество на принципиально новый уровень качества жизни.

college-mosenergo.ru

Устройство атомных электростанций

www.shkolageo.ru 1

Устройство атомных электростанций. Вред и польза (Балаковская АЭС)

Работа выполнена учащимися 11 класа Селиверстовым В., Руденко Н.

Необходимость атомной энергетики.

  • Мы научились получать электрическую энергию из невосполняемых ресурсов - нефти и газа, из восполняемых - воды, ветра, солнца. Но энергии солнца или ветра недостаточно, чтобы обеспечить активную жизнедеятельность нашей цивилизации. А гидроэлектростанции и ТЭЦ не так чисты и экономны, как того требует современный ритм жизни

Физические основы атомной энергетки.

    Ядра некоторых тяжелых элементов - например, некоторых изотопов плутония и урана - при определенных условиях распадаются, выделяя колоссальное количество энергии и превращаясь в ядра других изотопов. Этот процесс и называется расщеплением ядер. Каждое ядро, расщепляясь, «по цепочке» вовлекает в расщепление и своих соседей, поэтому процесс называется цепной реакцией. Ход ее непрерывно контролируется с помощью специальных технологий, так что он еще и контролируемый. Все это и происходит в реакторе, сопровождаясь выбросом огромной энергии. Эта энергия разогревает воду, которая вращает могучие турбины, которые вырабатывают электричество

Принцип работы аЭС

Мировая атомная энергетика.

  • Ведущие производители атомной энергии в мире - почти все самые технически развитые страны: США, Япония, Великобритания, Франция и, конечно, Россия. Сейчас во всем мире действует около 450 атомных реакторов.

  • Отказались от атомных электростанций: Германия, Швеция, Австрия, Италия.

Российские АЭС.

  • Балаковская

  • Белоярская

  • Волгодонская

  • Калининская

  • Кольская

  • Курская

  • Ленинградская

  • Нововоронежская

  • Смоленская

Российская атомная энергетика.

    История атомной энергетики в России началась 20 августа 1945 года, когда был создан «Специальный комитет по управлению работами с ураном», а спустя 9 лет уже была построена первая АЭС - Обнинская. Впервые в мире атомная энергия была приручена и поставлена на службу мирным целям. Безупречно проработав 50 лет, Обнинская АЭС стала легендой, а выработав свой ресурс, была отключена.

  • Сейчас в России работает 31 атомный энергоблок на 10 АЭС, которые питают четверть всех электрических лампочек в стране.

Балаковская Атомная.

Балаковская Атомная.

    Балаковская АЭС - крупнейший в России производитель электроэнергии. Ежегодно она вырабатывает более 30 миллиардов кВт. час электроэнергии (больше, чем любая другая атомная, тепловая и гидроэлектростанция страны). Балаковская АЭС обеспечивает четверть производства электроэнергии в Приволжском федеральном округе и пятую часть выработки всех атомных станций страны. Ее электроэнергией надежно обеспечиваются потребители Поволжья (76 % поставляемой ею электроэнергии), Центра (13 %), Урала (8 %) и Сибири (3 %). Электроэнергия Балаковской АЭС - самая дешевая среди всех АЭС и тепловых электростанций России. Коэффициент использования установленной мощности (КИУМ) на Балаковской АЭС составляет более 80 процентов.

технические характеристики.

  • Реактор типа ВВЭР-1000 (В-320)

  • Турбоустановка типа К-1000-60/1500-2 с номинальной мощностью 1000 МВт и частотой вращения 1500 об./мин.;

  • Генераторы типа ТВВ-1000-4 мощностью 1000 МВт и напряжением 24 кВ.

  • Ежегодная выработка электроэнергии составляет свыше 30-32 млрд кВт(2009 - 31,299 млрд кВт·ч.

  • Коэффициент использования установленной мощности - 89,3 %.

История Балаковской атомной.

  • 28 октября 1977 г – закладка первого камня.

  • 12 декабря 1985 г – пуск 1 энергоблока.

  • 24 декабря 1985 г – первый ток.

  • 10 октября 1987 г – 2 энергоблок.

  • 28 декабря 1988 г – 3 энергоблок.

  • 12 мая 1993 г – 4 энергоблок.

Достоинства атомных станций:

  • Небольшой объём используемого топлива и возможность его повторного использования после переработки.

  • Высокая единичная мощность: 1000-1600 МВт на энергоблок;

  • Относительно низкая себестоимость энергии, особенно тепловой;

  • Возможность размещения в регионах, расположенных вдали от крупных водноэнергетических ресурсов, крупных месторождений, в местах, где ограничены возможности для использования солнечной или ветряной электроэнергетики;

  • Хотя при работе АЭС в атмосферу и выбрасывается некоторое количество ионизированного газа, однако обычная тепловая электростанция вместе с дымом выводит ещё большее количество радиационных выбросов из-за естественного содержания радиоактивных элементов в каменном угле.

Недостатки атомных станций:

  • Облученное топливо опасно: требует сложных, дорогих, длительных мер переработки и хранения;

  • Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;

  • С точки зрения статистики крупные аварии весьма маловероятны, однако последствия такого инцидента крайне тяжёлы, что делает трудноприменимым страхование, обычно применяемое для экономической защиты от аварий;

  • Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700-800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также для последующей ликвидации отслуживших блоков;

  • Так как для АЭС необходимо предусматривать особо тщательно процедуры ликвидации (из-за радиоактивности облученных конструкций) и особо длительное наблюдение отходов - по времени заметно большем, чем период самой эксплуатации АЭС - то это делает неоднозначным экономический эффект от АЭС, сложным его корректный расчет.

Используемые ресурсы:

  • Буклет Балаковская АЭС

www.shkolageo.ru


Сегодня мы поговорим об атомной энергетике, ее производительности по сравнению с газом, нефтью, тепловыми электростанциями, ГЭС, а также о том, что атомная энергия — великий потенциал Земли, об ее опасности и пользе, ведь сегодня в мире, особенно после ряда мировых катастроф, связанных с атомными станциями и войной, ведутся споры о нужности атомных реакторов.

Итак, сначала, что такое атомная энергетика.

«Ядерная энергетика (Атомная энергетика) - это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.

Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер плутония-239 или урана-235. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.

Хотя в любой области энергетики первичным источником является ядерная энергия (например, энергия солнечных ядерных реакций в гидроэлектростанциях и электростанциях, работающих на органическом топливе, энергия радиоактивного распада в геотермальных электростанциях), к ядерной энергетике относится лишь использование управляемых реакций в ядерных реакторах».

АЭС - атомные электростанции производят электрическую или тепловую энергию с помощью ядерного реактора. Официально доля производимого ныне электричества с помощью АЭС снизилась за последнее десятилетие с 17-18 процентов до чуть более чем 10, по другим источникам - будущее за атомной энергетикой, и ныне доля энергии АЭС возрастает, в потенциале строятся новые АЭС, в том числе в России. Пока АЭС в большей части не рассчитаны на удовлетворение тепловых запросов населения (лишь в нескольких странах), атомная энергия используется для атомных подводных лодок, ледоколах, у США в проекте создание ядерного двигателя для космического корабля, атомного танка. Страны, активно использующие атомную энергию для покрытия нужд населения - США, Франция, Япония, при этом атомные станции во Франции покрывают более 70 % потребности страны в электроэнергии.

Ядерная энергетика имеет плюсом то, что при малых потреблениях ресурсов АЭС выдают огромный потенциал энергии.

Как бы нам, простым смертным, не казалось, что ядерная энергетика это далеко и неправда, на самом деле — это сегодня один из самых насущных вопросов, обсуждаемых в мире на уровне глобальных технологий, поскольку сфера обеспечения планеты энергией встает все острее, и самым перспективным направлением является как раз ядерная энергетика, почему — объясним в статье.

Ядерный цикл — основа ядерной энергетики, его этапы включают добычу урановой руды, ее измельчение, преобразование отделенного диоксида урана, переработка урана в высоко концентрированный и особого вида для получения тепло выделительных элементов для введения в зону ядерного реактора, затем сбор отработанного топлива, охлаждение и захоронение в специальных «кладбищах ядерных отходов». Вообще - самое опасное в использовании ядерного топлива - это добыча урана и захоронение ядерного топлива, работа АЭС не оказывает особого вреда окружающей среде.

Работающий атомный реактор, вышедший из строя может остывать (внимание!!) 4,5 года!

Первые попытки осуществления цепной реакции ядерного распада были произведены в университете Чикаго, уран в качестве топлива и графит в качестве замедлителя - в конце 1942 года.

На планете минимум пятая часть всей энергии вырабатывается атомными станциями.

«Согласно отчёту Международного агентства по атомной энергии (МАГАТЭ), на конец 2016 года насчитывалось 450 действующих ядерных энергетических (то есть производящих утилизируемую электрическую и/или тепловую энергию) реакторов в 31 стране мира (кроме энергетических, существуют также исследовательские и некоторые другие).

Примерно половина мирового производства электроэнергии на АЭС приходится на две страны - США и Францию. США на АЭС производят только 1/8 своей электроэнергии, однако это составляет около 20 % мирового производства».

США, Франция - самые производительные страны по ядерной энергетике, АЭС Франции обеспечивают более двух трети тепловых запросов страны.

Абсолютным лидером по использованию ядерной энергии являлась Литва. Единственная Игналинская АЭС, расположенная на её территории, вырабатывала электрической энергии больше, чем потребляла вся республика (например, в 2003 году в Литве всего было выработано 19,2 млрд кВт⋅ч, из них - 15,5 Игналинской АЭС). Обладая её избытком (а в Литве есть и другие электростанции), «лишнюю» энергию отправляли на экспорт».

В России (4-я страна по количеству атомных блоков, после Японии, США и Франции) стоимость ядерной энергии одна из самых низких, всего 95 коп (данные 2015-го года) за киловатт/час, и относительная безопасность с экологической точки зрения: нет выбросов в атмосферу, только водяной пар. Да и в целом АЭС довольно безопасный источник энергии, НО! При безопасной работе! Как говорят специалисты - у любой технологии есть свои минусы… Конечно, это спорное утверждение, что тысячи жертв и миллионы пострадавших - это просто минусы технологий, однако если посчитать жертв современного прогресса в других областях - картина будет нелестная.

Давайте обсудим пользу и опасность атомной энергетики. Очень странно, по мнению многих, обсуждать пользу атомной энергии.. особенно после таких событий как взрыв на Чернобыльской АЭС, Фукусима, уничтожение Хиросимы и Нагасаки… Однако все, что опасно в больших дозах, либо при неправильном использовании, либо при сбое вызывает катастрофы — при правильном использовании, в мирно идущем ритме очень часто вполне безопасно. Если разобрать структуру и механизм ядерных бомб, причину, проблему взрыва на Чернобыльской АЭС, то можно понять, что это сравнимо с ядом, который в малых количествах может быть лекарством, а в больших и при соединении с другими ядами - смертелен.

Итак, основные доводы тех, кто против атомной энергетики - что отходы после переработки ядерного топлива сложно утилизировать, они приносят много вреда природе, также вышедшие из строя и действующие АЭС могут служить оружием массового поражения в случае войны или в случае аварии.

«Вместе с тем, выступающая за продвижение ядерной энергетики Всемирная ядерная ассоциация опубликовала в 2011 году данные, согласно которым гигаватт*год электроэнергии, произведенной на угольных электростанциях, в среднем (учитывая всю производственную цепочку) обходится в 342 человеческих жертвы, на газовых - в 85, на гидростанциях - в 885, тогда как на атомных - всего в 8».

Радиоактивные отходы опасны своим вредным излучением и тем, что период полураспада у них очень долгий, соответственно, они долго излучают радиацию в огромных дозах. Для захоронений отходов используют специальные места, сегодня в России наиболее актуален вопрос, где делать «кладбище» радиоактивных отходов. Подобное захоронение планировалось сделать в Красноярском крае. Сегодня в России несколько захоронений подобного типа, на Урале например, там же и получают обогащенный уран (40 % мирового производства!!).

Хоронят в герметизированных бочках, каждый кг под строгой отчетностью.

Самые безопасные атомные станции строит именно Россия. После трагедии с Фукусимой мир учел ошибки АЭС, строительство сегодняшних АЭС в основном предусматривают более безопасную конструкцию, чем построенные ранее. Российские АЭС наиболее безопасные из всех мировых, как раз в «наших» АЭС учтены все ошибки, допущенные в случае с Фукусимой. В проекте даже АЭС, которая выдержит 9-бальное землетрясение, цунами.

В России сегодня около 10 АЭС и столько же строящихся.

Россия на 5-м месте по добычи урана, но по запасам на 2-м. Основное количество урана добывают в Краснокаменске, в глубоких шахтах. Опасен не столько сам уран, сколько радон - газ, образующийся при добыче урана. Очень много горняков, большую часть жизни занимавшихся добычей урана, умирают от рака, не доживая до пенсионного возраста (не верьте фильмам где говоря что все здоровые и живые, поскольку это исключение), люди в рядом находящихся деревнях также рано умирают или муаются от болезней.

Среди экологов, ученых ведутся ожесточенные споры о том, безопасна ли атомная энергия. Есть мнения абсолютно разные, такая радикальность вызвана в том числе и тем, что атомная энергия еще сравнительно молодая ниша мировых технологий, потому достаточных исследований, подтверждающих опасность или безопасность — нет. Но из того, что мы сегодня имеем, уже можно сделать вывод о сравнительной безопасности и пользе атомной энергетике.

Насчет экономичности - все сомнительно с точки зрения тех, кто против атомной энергетики.

Сегодня для поддержания работы АЭС требуется все больше затрат, в частности для нормальной безопасной деятельности, для добычи топлива и захоронения отходов. А сами АЭС, как мы уже выше писали, — могут быть потенциальным средством массового поражения населения, оружием.

Чернобыль, Фукусима, хоть и редкость, но имели место быть, а это значит, что есть шанс повторения.

Радиоактивные захоронения еще сохраняют радиацию много тысяч лет!!!

Вырабатываемые пары в результате работы АЭС создают мощный парниковый эффект, который при накапливании оказывает разрушительное влияние на природу.

ГЭС, например, ничуть не безопаснее, как утверждают специалисты, при прорыве плотины случаются не менее серьезные катастрофы, при использовании иных видов топлива также страдает природа, и в разы больше чем при ядерной энергетики.

Теперь о плюсах. Вывод о пользе атомной энергетики можно сделать, во-первых, из-за экономической выгодности, рентабельности (уже указанные выше «тарифы», где в России например самое дешевая энергия АЭС), во-вторых, из-за сравнительной безопасности для окружающей среды, ведь при правильной работе АЭС в атмосферу выделяется только пар, есть проблемы только с захоронением отходов.

1 гр урана даёт столько же энергии, сколько сжигание 1000 кг нефти или даже больше.

Чернобыль - это исключение и человеческий фактор, а вот миллион тонн угля - несколько человеческих жизней, при этом энергии от сгорания угля и нефти получается намного меньше, чем от ядерного топлива. Радиационный фон от сжигания угля, нефти соизмерим с той же Фукусимой, только когда катастрофа - это сразу и много, а постепенный вред не так заметен, однако более серьезен. А сколько природы губится вырубленными карьерами и когда добывается сырье, терриконами.

По сведению ряда экологов — отсутствие радиации иногда вреднее чем ее наличие и даже иногда избыток. Почему?

Радиоактивные частицы окружают нас кругом, от рождения до смерти. И радиация «в рамках» тренирует иммунитет клеток к защите от радиации, если человек будет полностью лишен контакта с радиоактивной средой - то может умереть от первого же контакта с ней впоследствии. И атомные станции, согласно доводам ученых, излучают лишь малую часть вредной радиации. Отсутствие радиации не менее опасно чем ее избыток - ка считают некоторые экологи.

Придерживающиеся же обратной точки зрения о том что атомная энергия это зло, говорят о небезопасности атомных реакторов и альтернативе иных видов энергии — солнце, ветре.

Дискуссии на тему добра и зла атомной энергии даже называются громко: «принесет ли мир мирный атом?». И эти дискуссии на сегодняшний день бесконечны. Но можно сказать главное - иного выхода кроме как развивать атомную энергетику во всем мире у людей нет, поскольку объем потребляемых ресурсов энергии и тепла все больше возрастает, и ни одна другая форма добычи и выработки энергии не способна покрыть запросы человечества лучше чем ядерная энергетика.

Нас становится неимоверно много, это уже не знают только живущие в далеких глубинках, планета исчерпала все возможные ресурсы для поддержания нормального уровня жизни человечества. Даже исходя из данных приведенных в статье - атомная энергетика самая перспективная отрасль, способная при меньшем вреде для окружающей среды и затратах дать намного больший объем энергии, ее производительность выше других известных источников энергии.