Какие углеводы называют моно. Углеводы (моно-, ди- и полисахариды)

ОПРЕДЕЛЕНИЕ

Углеводы – органические соединения, имеющие общую формулу С m H 2 n O n (n, m >3). Их разделяют на три группы: моно-, олиго- и полисахариды.

ОПРЕДЕЛЕНИЕ

Моносахариды – углеводы, которые не могут гидролизоваться с образованием более простых углеводов (глюкоза, фруктоза).

Олигосахариды – углеводы, представляющие собой продукты конденсации двух или нескольких моносахаридов (сахароза).

– углеводы, образованные большим числом молекул моносахаридов (крахмал, пектин, целлюлоза).

Моносахариды. Глюкоза

Глюкоза (С 6 Н 12 О 6) – представляет собой кристаллы белого цвета, сладкие на вкус и хорошо растворимые в воде. Молекулы глюкозы могут существовать в линейной (альдегидоспирт с пятью гидроксильными группами) и циклической форме (α- и β-глюкоза), причем вторая форма получается из первой при взаимодействии гидроксильной группы при 5-м атоме углерода с карбонильной группой (рис. 1).

Рис. 1. Формы существования глюкозы: а) β-глюкоза; б) α-глюкоза; в) линейная форма

Для углеводов, в частности для глюкозы, характерны следующие химические свойства:

1. Реакции, протекающие при участии карбонильной группы:

— глюкоза окисляется аммиачным раствором оксида серебра и гидроксидом меди (II) в глюконовую кислоту при нагревании

CH 2 OH-(CHOH) 4 -CH=O + Ag 2 O → CH 2 OH-(CHOH) 4 -COOH + 2Ag↓

CH 2 OH-(CHOH) 4 -CH=O + 2Cu(OH) 2 → CH 2 OH-(CHOH) 4 -COOH +Cu 2 O + H 2 O

— глюкоза способна восстанавливаться в шестиатомный спирт – сорбит

CH 2 OH-(CHOH) 4 -CH=O +2[H] → CH 2 OH-(CHOH) 4 -CH 2 OH

— глюкоза не вступает в некоторые реакции, характерные для альдегидов, например, в реакцию с гидросульфитом натрия.

2. Реакции, протекающие при участии гидроксильных групп:

— глюкоза дает синее окрашивание с гидроксидом меди (II) (качественная реакция на многоатомные спирты);

— образование простых эфиров. При действии метилового спирта на один из атомов водорода замещается на группу СН 3 . В эту реакцию вступает гликозидный гидроксил, находящийся при первом атоме углерода в циклической форме глюкозы


— образование сложных эфиров. Под действием уксусного ангидрида все пять групп –ОН в молекулу глюкозы замещаются на группу –О-СО-СН 3 .

3. Брожение:

— спиртовое брожение

— молочнокислое брожение

C 6 H 12 O 6 → 2CH 3 -CH(OH)-COOH

— маслянокислое брожение

C 6 H 12 O 6 → C 3 H 7 COOH + 2H 2 + 2CO 2

Моносахариды. Фруктоза

Фруктоза предсттавляет собой изомер глюкозы. Как и глюкоза, она может существовать в линейной (кетоноспирт) и циклической форме (рис. 1).


Рис. 1. Формы существования фруктозы

Фруктоза вступает во все реакции, характерные для глюкозы, но, в отличие от неё не вступает в реакцию «серебряного зеркала».

ОПРЕДЕЛЕНИЕ

Сахароза (C 12 H 22 O 11) – представляет собой белое кристаллическое вещество, сладкое на вкус, хорошо растворимое в воде.

Молекула сахарозы содержит 2 цикла – 6-тичленный (остаток глюкозы) и 5-тичленный (остаток фруктозы), соединенных между собой за счет гликозидного гидроксила глюкозы:

Для сахаразы характерно наличие следующих химических свойств:

1. Гидролиз:

C 12 H 22 O 11 + H 2 O → C 6 H 12 O 6 (глюкоза) + C 6 H 12 O 6 (фруктоза)

2. Сахароза реагирует с гидроксидом кальция с образованием сахарата кальция.

3. Сахароза не вступает в реакцию «серебряного зеркала», поэтому её называют не восстанавливающим дисахаридом.

ОПРЕДЕЛЕНИЕ

Крахмал — (С 6 Н 10 О 5) n – белый порошок, нерастворимый в холодной воде и образующий коллоидный раствор в горячей воде.

Это природный полимер. Его молекулы состоят из линейный и разветвленных цепей, содержащих остатки α-глюкозы. Фрагмент структуры крахмала выглядит следующим образом:

Крахмал способен гидролизоваться при нагревании в кислой среде, причем конечным продуктом гидролиза является глюкоза:

Крахмал дает интенсивное синее окрашивание с йодом — это качественная реакция на йод.

ОПРЕДЕЛЕНИЕ

– (С 6 Н 10 О 5) n – природный полимер, молекулы которого состоят только из линейных цепей, содержащих остатки β-глюкозы:

Для целлюлозы также, как и для крахмала характерна способность гидролизоваться при нагревании в кислой среде:

(С 6 Н 10 О 5) n + nН 2 О → nC 6 H 12 O 6

Каждое структурное звено молекулы целлюлозы содержит по три –ОН группы, которые могут реагировать с азотной и уксусной кислотами с образованием сложных эфиров:

(C 6 H 7 O 2 (OH) 3) n + 3nCH 3 COOH → (C 6 H 7 O 2 (OCOCH 3) 3) n + 3nH 2 O

(C 6 H 7 O 2 (OH) 3) n + 3nHNO 3 →(C 6 H 7 O 2 (ONO 2) 3) n + 3nH 2 O

Примеры решения задач

ПРИМЕР 1

Задание Полученное из глюкозы соединение С 3 Н 6 О 3 в реакции с натрием образует соединение состава C 3 H 4 Na 2 O 3 , с карбонатом кальция - С 6 Н 10 СаО 6 , с этанолом в присутствии серной кислоты - С 5 Н 10 О 3 . Назовите это соединение и напишите уравнения реакций
Решение При молочнокислом брожении из глюкозы получается молочная (2-гидроксипропановая) кислота:

С 6 Н 12 О 6 → 2СН 3 -СН(ОН)-СООН.

В реакции молочной кислоты с натрием участвуют и гидроксильная и карбоксильная группы:

СН 3 -СН(ОН)-СООН + 2Na → CH 3 -CH(ONa)-COONa + H 2

С карбонатом кальция и с этанолом молочная кислота реагирует как обычная карбоновая кислота:

СаСО 3 + 2СН 3 СН(ОН)СООН → (СН 3 СН(ОН)СОО) 2 Са + CO 2 + Н 2 О,

СН 3 СН(ОН)СООН+С 2 Н 5 ОН → СН 3 СН(ОН)СООС 2 Н 5 +Н 2 О.

Углеводы разделяют на простые (моносахариды) и сложные (полисахариды).

Моносахариды (монозы). Это гетерополифункциональные соединения, содержащие карбонильную и несколько гидроксильных групп. Моносахариды имеют молекулярную формулу С п (Н 2 О) п , которая и послужила основой для названия данного класса соединений (углерод + вода). По своей структуре монозы относятся к полиоксиальдегидам, или альдозам, или полиоксикетонам, или кетозам. В зависимости от числа атомов углерода монозы делят на триозы (три атома углерода), тетрозы (четыре атома), пентозы (пять атомов), гексозы (шесть атомов) и гептозы (семь атомов). В зависимости от строения карбонильной группы каждую из моноз обозначают: альдотриоза, альдогексоза, кетогексоза и т.п.

Оптическая изомерия моносахаридов .

Характерной особенностью структуры моносахаридов является наличие в молекулах асимметрических (т.е. имеющих четыре различных заместителя) атомов углерода. Асимметрические атомы углерода представляют собой центры хиральности молекулы. Следствие хиральности молекулы - явление оптической изомерии, или энантиомерии, которое выражается в способности соединения вращать плоскость поляризованного света в противоположные стороны. Соединение с асим-метрическими атомами углерода может существовать в виде 2 изо-меров . В соединениях с одинаковыми асимметрическими атомами углерода число оптических изомеров уменьшается вследствие существования мезоформ. Мезо-соединения оптически неактивны из-за «внутренней компенсации» знака вращения. Примером мезо-соединения является D-ксилит.

Оптические изомеры, относящиеся друг к другу как несим-метричный предмет к своему зеркальному отображению, называют энантиомерами, или оптическими антиподами. Энантиомеры отличаются друг от друга конфигурацией всех центров хиральности и образуют D-форму (лат.Dexter — правый) и L-форму (лат. laevus — левый) — стереохимические ряды моносахаридов. Изомеры, отличающиеся конфигурацией только части центров хиральности и не являющиеся оптическими антиподами, называют диастереомерами. Пару диастереомеров, отличающихся конфигурацией только одного асимметрического атома углерода, называют эпимерами. Обычно к названию добавляют номер эпимерного атома углерода, 2-эпимеры называют просто эпимерами. Например, D-аллоза и D-альтроза - эпимеры, D-аллоза и D-глюкоза - 3-эпимеры, D-аллоза и D-гулоза - 4-эпимеры.

В качестве стандарта для определения принадлежности соединения к стереохимическому D- или L-ряду принята конфигурация асимметрического атома в простейшей триозе — D-глицериновом альдегиде. Принадлежность соединения стереохимическому ряду определяет конфигурация асимметрического атома углерода с наибольшим номером (в случае глюкозы — атома С 5). Если она совпадает с конфигурацией асимметрического атома углерода D-глицеринового альдегида , то соединение относят к D-ряду, если не совпадает — к L-ряду. Установлено, что все природные монозы относятся к D-ряду.


Цикло-оксо-таутомерия моносахаридов .

В твердом состоянии и в водном растворе моносахариды преимущественно существуют в виде циклических полуацеталей. Образование полуацеталей можно рассматривать как внутримолекулярную реакцию A N , в результате которой образуются наиболее устойчивые шестичленные циклы (пиранозные) и пятичленные циклы (фуранозные). Таким образом, в растворе устанавливается таутомерное равновесие между открытой (оксо-формой) и циклической формой моносахарида, причем циклическая форма значительно преобладает (более 99,9 % в равновесной смеси):

Для изображения на плоскости пространственной структуры соединений в открытой форме используют проекционные формулы Фишера, а для изображения на плоскости пространственной структуры циклических соединений применяют проекционные формулы Хоуорса :

При этом руководствуются следующими правилами: цикл изображают плоским; заместители, находящиеся в оксо-форме справа, изображают под плоскостью цикла, а находящиеся слева — над плоскостью цикла; атомы водорода связей С—Н могут быть не показаны.

В циклической форме появляется дополнительный по сравнению с открытой формой асимметрический атом углерода (центр хиральности): атом С 1 в альдозах или атом С 2 в кетозах, называемый аномерным атомом углерода, и дополнительная группа -ОН, называемая полуацеталъным гидроксилом (в формуле Хоуорса показана звездочкой *). Если конфигурация аномерного атома углерода совпадает с конфигурацией атома, определяющего принадлежность соединения стереохимическому ряду, его называют a-аномером, если не совпадает — b-аномером.

Таким образом, a- и b-аномеры моноз можно рассматривать как изомеры положения полуацетального гидроксила. Переход аномерных форм a « b осуществляется только через открытую оксо-форму: a-форма « оксо-форма « b-форма

Аналогично устанавливается равновесие в растворе между пиранозными и фуранозными формами. Преобладание a- или b-аномера зависит от природы монозы, растворителя, концентрации и других внешних условий. Равновесие между всеми формами является, таким образом, динамическим. Так, если какой-либо аномер глюкозы растворить в воде, он постепенно превращается в другой аномер, пока не образуется равновесная смесь двух аномеров, в которой также содержится очень небольшое количество открытой формы.

Этот переход сопровождается изменением оптического вращения раствора. Такое явление называют мутаротацией (аномеризацией) моносахаридов. Равновесная смесь, образующаяся в результате мутаротации как a-, так и b-D-глюкопираноз, содержит 36 % a-изомера и 64 % b-формы. Доля оксо-формы в равновесной смеси невелика (при рН 6,9 равновесная смесь D-глкжозы содержит лишь малую часть альдегидной формы). По-этому монозы не дают характерного для альдегидов окрашивания в реакции с фуксиносернистой кислотой и не реагируют с гидросульфитом натрия. Мутаротация катализируется кислотами и основаниями. В твердом состоянии монозы находятся исключительно в циклической форме.

Химические свойства моносахаридов. В химическом отношении монозы сочетают в себе свойства многоатомных спиртов, карбонильных соединений и полуацеталей.

1. Для циклических форм моноз наиболее характерны реакции с участием гидроксильной группы. Наиболее химически активна полуацетальная гидроксильная группа.

Реакция происходит на первой стадии гликолиза (процесса окисления глюкозы в пируват). Необходимо заметить, что все промежуточные продукты гликолиза представляют собой сложные эфиры моноз и фосфорной кислоты.

2. Окисление моноз в кислой и нейтральной среде приводит к образованию различных кислот. Окислению может подвергаться только карбонильная группа — «мягкое» окисление, напри-мер, бромной водой с образованием - оновых кислот

Окисление карбонильной и первичной гидроксильной группы — «жесткое» окисление, например, раствором HNO 3 до гликаровых кислот.

Окисление только первичной гидроксильной группы в мягких условиях (например, при действии ферментов) при защите альдегидной группы приводит к образованию гликуроновых кислот.

Гликурониды при нагревании легко декарбоксилируются, что приводит к образованию моноз с меньшим числом атомов углеро-да. Так можно получить из D-гликуронида пентозу — D-ксилозу.

Окисление моноз в щелочной среде сопровождается деструк-цией углеродного скелета. Реакции окисления характерны не только для альдоз, но и для кетоз (в отличие от кетонов), что объясняет-ся явлением эпимеризации моноз.

Окислению могут подвергаться и некоторые дисахариды, называемые восстанавли-вающими. Существуя преимущественно в форме полуацеталей, они обладают потенциально свободной альдегидной группой (в оксо-форме).

Восстанавливающие моно- и дисахариды восстанавливают ионы меди(П), входящие в состав реактива Фелинга или в состав реактива Бенедикта до оксида меди (I) Сu 2 О, а также ионы серебра в реактиве Толленса OH до свободного серебра. Реакции используют как качественные на наличие восстанавливающих сахаридов.

3. Моносахариды подвергаются химическому либо билогическому восстановлению.

Восстановление моноз, как и всяких карбонильных соедине-ний, приводит к превращению карбонильных групп в спиртовые; при этом образуются многоатомные спирты, называемые сахарными спиртами, или альдитами.

Помимо амальгамы натрия в водной (или водно-спиртовой, или спиртовой) среде для восстановления моноз используют во-дород в присутствии катализаторов (Pt, Pd, Ni) и гидриды метал-лов (особенно NaBH 4). Следует иметь в виду, что при восстановлении альдоз образуется один спирт, а при восстановлении кетоз получают два стеоизомерных многоатомных спирта, т.к. неасиметрический 2-й атом С в кетозе (атом карбонильной группы) после восстановления становится асимметрическим и возможны две ориентации гидроксильной группы, связанной с ним.

4. Реакция изомеризации (эпимеризации) всегда происходит по a-СН*-кислотному центру моносахаридов, которым является атом углерода, непосредственно связанный с карбонильной груп-пой. Реакция протекает под действием разбавленных растворов ще-лочей или ферментативно (в условиях организма) и сопровожда-ется внутримолекулярным окислением-восстановлением (диспропорционированием) атомов углерода С 1 и С 2 .

В ходе этой перегруппировки вследствие переноса протона, осуществляемого под влиянием гидроксильного иона, возникает промежуточное соединение — ендиол (одна двойная связь (-ен) между двумя гидроксильными группами (ди-ол)).

Превращения ендиола могут привести к образо-ванию как кетозы, так и двух альдоз.

Таким образом, в результате реакции постепенно образуется равновесная смесь изомеров. Например, в результате эпимеризации D-глюкозы образуется D-манноза — эпимер глюкозы по С 2 и D-фруктоза — структурный изомер глюкозы.

Пример реакции изомеризации в организме — ферментатив-ное превращение глюкозо-6-фосфата в фруктозо-6-фосфат в про-цессе гликолиза.

Олиго- и полисахариды . Дисахариды (биозы) представляют со-бой продукт конденсации двух молекул моносахаридов, соеди-ненных О-гликозидной связью.

Если в реакции конденсации принимают участие оба полуацетальных гидроксила и два остатка моноз соединяются гликозид-гликозидной связью, образуется невосстанавливающий дисахарид. Такой дисахарид не содержит гликозидный гидроксил, не может переходить в открытую альдегидную форму и поэтому не восстанавливает окислов металлов (не вступает в реакции с гидроксидом меди или в реакцию «серебряного зеркала»).

Если в реакции конденсации принимают участие один полуацетальный и один спиртовой гидроксил и два остатка моноз соединяются гликозид-гликозной связью, образуется восстанавливающий дисахарид. Такой дисахарид содержит гликозидный гидроксил, за счёт которого может переходить в открытую альдегидную форму и выступать в качестве восстановителя.

Дисахариды, как любые гликозиды, гидролизуются в кислой среде. Наиболее биологически важными дисахаридами являются сахароза, мальтоза, лактоза и целлобиоза.

Например, структурную формулу мальтозы, которая является основным продуктом расщепления крахмала в полости рта под действием фермента слюны — b-амилазы, можно представить сле-дующим образом:

Систематическое название (a-D-глюкопиранозил-(1®4)-a-D-глюкопираноза или 4-(a-D- глюкопиранозидо)-D-глюко-пираноза) указывает на наличие гликозидной связи между имеющим a-конфигурацию атомом С, одного остатка глюкозы и атомом С 4 другого остатка. Мальтоза образуется в результате конденсации двух молекул a-D-глюкопиранозы с образованием гликозидной связи между атомом С 1 a-аномера глюкозы и атомом С 4 второй молекулы глюкозы. Такую связь называют a (1®4) -связью.

Лактоза (4-(b-D-галактопиранозидо)-D-глюкопираноза) имеет строение:

Сахарозу (a-D-глюкопиранозидо-b-D-фруктофуранозид) называют тростниковым сахаром; она является невосстанавливающим дисахаридом, содержится в тростнике, сахарной свекле, различных фруктах, ягодах и овощах.

Систематическое название сахарозы отражает конфигурацию обоих гликозидных (суффикс «озид» у названий обеих моноз) гидроксилов (a или b), и наличие связи С 1 -С 2 .

Продукты конденсации нескольких (от 2 до 12) молекул моносахаридов называют олигосахаридами; большего числа моносахаридов — полисахаридами .

Если макромолекулы построены из остатков одного моносахарида, то такие полисахариды называют гомополисахаридами . Среди гомополисахаридов наиболее биологически важными являются поли- D -глюкопиранозы: амилоза, амилопектин, гликоген (дисахаридным фрагментом последних является мальтоза) и целлю-лоза, структурным компонентом которой выступает дисахарид цел-лобиоза.

Амилоза — это полимер неразветвленного строения (линейный полимер) молекулярной массой около 60000; при нагревании растворяется в воде, образуя лиофильный коллоидный раствор; взаимодействует с йодом с образованием комплексного «соеди-нения включения» синего цвета.

При растворении в воде амилопектин набухает, образуя связаннодисперсную систему — гель. С йодом амилопектин образует соединение красно-фиолетового цвета. Смесь амилозы (20-25%) и амилопектина (75-80%) предтавляет собой полисахарид природного происхождения — крахмал.

Таким образом, природный крахмал не является индивидульным веществом: он состоит из двух фракций, отличающихся пo строению и вследствие этого обладающих различной растворимостью в теплой воде. Крахмал является основным резервным полисахаридом растений.

Крахмал - белое аморфное вещество. В холодной воде не растворим, в горячей набухает и постепенно растворяется. При охлаждении получается студнеобразная масса или гель (кисель). По многим свойствам кисель похож на твёрдое тело, в частности, проявляет упругость, несмотря на то, что это довольно разбавленный раствор крахмала, а не концентрированный, как например, сироп. Дело в том, что при попадании в раствор разветвлённые и неразветвлённые молекулы амилопектина и амилазы за счёт возникающих водородных связей формируют трёхмерную пространственную сетку, в ячейки которой попадают молекулы воды. Такой каркас существует только при невысокой температуре. Если кисель подогреть, молекулы начнут двигаться энергичнее, водородные связи между ними разрушатся и кисель станет жидким.

Все полисахариды крахмала вращают поляризованный свет вправо, так как образованы правовращающей глюкозой. При нагревании с кислотами крахмал гидролизуется по месту глюкозид-глюкозных связей, давая последовательно декстрины, мальтозу и глюкозу.

Гликоген («животный крахмал») по структуре и свойствам похож на амилопектин, но имеет еще более разветвленную полимерную цепь и является резервным полисахаридом животных, запасаемым в печени и мускульной ткани.

Гликоген является «двойником» крахмала в животном мире и играет роль депо питательных веществ и запасного углевода животных тканей (откладывается, в основном, в печени и в мышцах). Молекулярная масса гликогена очень велика - около 100 млн. Такой размер молекул соответствует их биологической функции резервного углевода. Макромолекула гликогена из-за большого размера не проходит через мембрану и остаётся внутри клетки, пока не возникнет потребность в энергии. В перерывах между приёмами пищи гликоген понемногу расщепляется до глюкозы, которая поступает в кровь и затем используется клетками организма. У хорошо упитанного взрослого человека запасы гликогена достигают 0,5 кг.

Одним из важнейших полисахаридов является целлюлоза. Она образует главную составную часть стенок растительных клеток. Целлюлоза представляет собой полимер, полностью состоящий из звеньев b-D-глюкопиранозы, которые связаны гликозидными b(1®4)-связями.

Целлюлоза — линейный полимер, цепи которой могут содер-жать более 10000 звеньев:

Чистая целлюлоза является белым волокнистым веществом, нерастворимым в воде, эфире или спирте. Такая устойчивость по отношению к растворителям объясняется уникальной структурой целлюлозы.

Этот полисахарид состоит из остатков D-глюкозы, связанных только гликозидной b(1®4)-связью; молекулы целлюлозы ните-видные и не имеют разветвлений. Высокоупорядоченная структура, подтвержденная данными рентгеноструктурного анализа, обусловливает необычайную прочность и упругость целлюлозы, равно как и отсутствие растворимости в большинстве применяемых растворителей.

Любопытно, что целлюлоза растворяется в реактиве, приготовленном смешиванием Сu(ОН) 2 с концентрированным водным раствором аммиака (реактив Швейцера), а также в подкисленном растворе ZnCl 2 при нагревании или в концентрированной серной кислоте, т.е. в тех средах, состав которых обусловливает возможность разрыва водородных связей в молекулах целлюлозы и образование новых связей с растворителем.

Благодаря наличию свободных спиртовых гидроксильных групп целлюлоза способна реагировать со спиртами и кислотами с образованием эфиров. Целлюлоза выполняет функции структурного полисахарида, используемого организмом для построения остова клеточной ткани.

Пектиновые вещества содержатся в плодах и овощах, для них характерно желеобразование в присутствии органических кислот, что используется в пищевой промышленности для изготовления желе и мармеладов.

В основе пектиновых веществ лежит пектовая - полигалактуроновая кислота.

Пектовая кислота состоит из остатков D-галактуроновой кислоты, связанных a(1®4)-гликозидной связью.

Некоторые пектиновые вещества оказывают противоязвенное действие и являются основой ряда препаратов, например, плантаглюцид из подорожника.

Гетерополисахариды (макромолекулы которых построены из остатков более, чем одного моносахарида) также достаточно широко распространены в природе.

Альгиновые кислоты содержатся в бурых водорослях. Неразветвленная цепь построена из соединенных (1®4) -связями остатков D-маннуроновой и L-гулуроновой кислот. Альгиновые кислоты как гелеобразователи используются в пищевой промышленности. Морские водоросли служат источником многих полисахаридов. Например, широко применяемый в биохимических исследованиях агар представляет собой гетерополисахарид, содержащий большое число сульфатных групп. Агар состоит из смеси агарозы и агаропектина. В полисахаридной цепи агарозы чередуются остатки D-галактозы и L-лактозы.

Полисахариды соединительной ткани . Соединительная ткань распределена по всему организму и обусловливает прочность и упругость органов, эластичность их соединения, стойкость к проникновению инфекций. Полисахариды соединительной ткани связаны с белками.

Наиболее полно изучены хондроитинсульфаты (кожа, хрящи, сухожилия), гиалуроновая кислота (стекловидное тело глаза, пуповина, хрящи, суставная жидкость), гепарин (печень). Эти Полисахариды обладают общими чертами в строении: их неразветвленные цепи построены из дисахаридных остатков, в состав которых входят уроновые кислоты (D-глюкуроновая, D-галактуроновая, L-идуроновая) и N-ацетилгексозамины (N-ацетилглюкозамин, N-ацетилгалактозамин). Некоторые из них содержат остатки серной кислоты.

Гиалуроновая кислота построена из дисахаридных остатков, соединенных b(1®4)-гликозидными связями. Дисахаридный фрагмент состоит из остатков D-глюкуроновой кислоты и N-ацетил-О-глюкозамина, связанных b(1®3)-гликозидной связью. Гиалуроновая кислота имеет большую молекулярную массу - 2-7 млн., растворы обладают высокой вязкостью, с чем связывают её барьерную функцию, обеспечивающую непроницаемость соединительной ткани для патогенных микроорганизмов.

Сульфатная группа образует эфирную связь с гидроксильной группой N-ацетил-О-галактозамина, находящейся либо в 4-м, либо в 6-м положении, Молекулярная масса хондроитинсульфатов составляет 10 000 - 60 000.

Хондроитинсульфаты и гиалуроновая кислота содержатся не в свободном, а в связанном виде с полипептидными цепями.

Функции углеводов – структурная и опорная функции (целлюлоза основной структурный компонент клеточных стенок растений, хитин грибов, хитин обеспечивает жёсткость экзоскелета членистоногих); – защитная роль (у растений: шипы, колючки и др. , состоящие из клеточных стенок мёртвых клеток; – энергетическая функция (при окислении 1 г углеводов выделяется 4, 1 ккал энергии); – пластическая функция (входят в состав сложных молекул, например, рибоза и дезоксирибоза участвуют в построении АТФ, ДНК и РНК); – запасающая функция (запасные питательные вещества: гликоген у животных, крахмал и инулин – у растений); – осмотическая функция (участвуют в регуляции осмотического давления в организме, в т. ч. в крови); – рецепторная функция (входят в состав воспринимающей части многих клеточных рецепторов).

Стереоизомерия моноз Стереоизомеры углеводов, отличающиеся конфигурацией одного или нескольких асимметрических атомов углерода, называются диастереомерами. Эпимеры и энантиомеры – частные случаи диастереомеров. Диастереомеры, относящиеся друг к другу как предмет к своему зеркальному изображению, называются энантиомерами. Энантиомеры имеют одинаковые физические и химические свойства, различаются по оптическим свойствам и биологической активности. Если диастереомеры различаются конфигурацией только одного асимметрического атома углерода, то их называют эпимерами. Если различается конфигурация второго атома углерода, то такие диастереомеры называют просто эпимерами; если других атомов углерода, то к названию добавляется номер этого атома.

Химические свойства моноз Углеводы являются гетерофункциональными соединениями и могут существовать как в открытой, так и в циклической форме. Все химические реакции, в которые они вступают, можно разделить на три группы: реакции с участием карбонильной группы (восстановление, окисление); реакции с участием гидроксильных групп (образование простых и сложных эфиров); реакции с участием полуацетального гидроксила (получение гликозидов).

Восстановление моноз При восстановлении карбонильной группы моноз образуются полиолы (многоатомные спирты). Это кристаллические вещества, легко растворимые в воде и часто обладающие сладким вкусом, поэтому некоторые используются в качестве заменителей сахара (ксилит, сорбит). Кетозы (в отличие от альдоз) дают 2 полиола, т. к. атом углерода кетогруппы при восстановлении превращается в асимметрический, что приводит к существованию ещё одного изомерного полиола по второму атому углерода. Восстановление глюкозы в сорбит является одной из стадий промышленного синтеза аскорбиновой кислоты.

Окисление моноз Альдозы окисляются легче, чем кетозы. При взаимодействии со слабыми окислителями (гидроксид меди (II), аммиачный раствор гидроксида серебра) альдегидная группа окисляется до карбоксильной. Получаются –оновые кислоты (глюконовая, манноновая и т. д.) Взаимодействие альдоз с более сильными окислителями (разбавленная азотная кислота) приводит к окислению альдегидной и первичной спиртовой групп. Образуются дикарбоновые –аровые кислоты. При участии ферментов окисление может протекать по первичной спиртовой группе, не затрагивая альдегидную. В этом случае получаются –уроновые кислоты.

Окисление кетоз происходит под действием сильных окислителей и сопровождается деструк цией углеродного скелета. Разрыв связи может происходить двумя способами: между первым и вторым, а также вторым и третьим атомами углерода. При этом все концевые атомы углерода окисляются с образованием карбоксильных групп. При окислении D фруктозы образуется четыре продукта реакции. При разрыве связи между первым и вторым атомами углерода образуются муравьиная и D арабинаровая кислоты. При разрыве связи между вторым и третьим атомами углерода образуются щавелевая и мезовинная кислоты: Тот факт, что не только альдозы, но и кетозы дают реакцию «серебряного зеркала» (со слабым окислителем – аммиачным раствором гидроксида серебра) объясняется тем, что реакция идёт в щелочной среде, где возможны таутомерные превращения кетоз в эпимерные им альдозы. Образующиеся альдозы и выступают в качестве сильного восстановителя.

Образование простых эфиров Простые эфиры получают при взаимодействии гидроксильных групп моноз с алкилгалогенидами. Одновременно в реакцию вступают как полуацетальная, так и спиртовые гидроксигруппы. Полуацетальная группа –ОН более реакционноспособна, поэтому образование простого эфира по этой группе протекает быстрее. Образующиеся при этом моноэфиры называют гликозидами (пиранозидами и фуранозидами). Простые эфиры, образованные спиртовыми гидроксильными группами не гидролизуются, а гликозидная связь легко подвергается гидролизу в щелочной среде. Растворы гликозидов не мутаротируют.

Классификация гликозидов Гликозидами называют не только ацетали углеводов, образующиеся при взаимодействии со спиртами, но и продукты, образующиеся при взаимодействии полуацетального гидроксила с другими соединениями. Связь, которую образует полуацетальный гидроксил, также называют гликозидной. В зависимости от размера цикла гликозиды подразделяются на пиранозиды и фуранозиды. Неуглеводная часть гликозида называется агликоном («не сахар»). Гликозиды могут классифицироваться в зависимости от того через какой атом агликон связан с сахарной частью гликозида: С гликозиды, О гликозиды, N гликозиды, S гликозиды.

Образование сложных эфиров Сложные эфиры можно получить, действуя на моносахариды ангидридами органических кислот. Например, при взаимодейст вии с уксусным ангидридом получаются ацетильные производные моносахаридов. Сложные эфиры гидролизуются как в кислой, так и щелочной средах. Большое значение имеют эфиры фосфорной кислоты – фосфаты, содержащиеся во всех растительных и животных организмах. К ним, прежде всего, относятся фосфаты D глюкозы: 1 фосфат D глюкозы получается при гидролизе гликогена с помощью фермента фосфорилазы; 6 фосфат глюкозы образуется на первой стадии гликолиза (катаболизма глюкозы в организме). Фосфаты D рибозы и 2 дезокси D рибозы служат структурными элементами ДНК, РНК, АТФ и ряда коферментов.

Дисахариды (биозы) продукт конденсации двух молекул моносахаридов, соединенных О гликозидной связью. Если в реакции конденсации принимают участие оба полуацетальных гидроксила и два остатка моноз соединяются гликозид-гликозидной связью, образуется невосстанавливающий дисахарид. Такой дисахарид не содержит гликозидный гидроксил, не может переходить в открытую альдегидную форму и поэтому не восстанавливает окислов металлов (не вступает в реакции с гидроксидом меди или в реакцию «серебряного зеркала»). Если в реакции конденсации принимают участие один полуацетальный и один Спиртовой гидроксил и два остатка моноз соединяются гликозид-гликозной связью, образуется восстанавливающий дисахарид. Такой дисахарид содержит гликозидный гидроксил, за счёт которого может переходить в открытую альдегидную форму и выступать в качестве восстановителя.

Олигосахариды в природе Сахароза (тростниковый сахар, свекловичный сахар) чрезвычайно распространена в растениях. Невосстанавливающий дисахарид. Мальтоза (солодовый сахар) состоит из двух остатков D глюкопиранозы, связанных 1, 4 гликозидной связью. Мальтоза образуется при гидролизе крахмала под действием фермента амилазы; если долго жевать хлеб можно почувствовать сладковатый вкус мальтозы, образующейся из крахмала хлеба под действием амилазы слюны. Восстанавливающий дисахарид. Целлобиоза состоит из двух остатков D глюкопиранозы, связанных 1, 4 гликозидной связью. Является структурной единицей клетчатки (целлюлозы). Восстанавливающий дисахарид. Лактоза (молочный сахар) состоит из остатков D галактопиранозы и D глюкопиранозы, связанных 1, 4 гликозидной связью. Содержится только в молоке млекопитающих, восстанавливающий дисахарид. В организме гидролизуется под действием фермента лактазы, при недостаточности которого наблюдается неспособность переваривать лактозу. Поэтому при потреблении молока людьми с лактазным дефицитом, лактоза не переваривается, а сбраживается кишечной микрофлорой с неприятными последствиями (метеоризм, диарея). Трегалоза (грибной сахар) состоит из двух остатков D глюкопиранозы, связанных за счёт полуацетальных гидроксильных групп, поэтому трегалоза не восстанавливающий дисахарид. Содержится в грибах и некоторых растениях. В дрожжах содержание трегалозы достигает 18 % на сухое вещество. Другие дисахариды, такие как мелибиоза, гентибиоза, тураноза, примвероза и т. д. встречаются редко. Трисахариды встречаются редко. Трисахарид рафиноза, состоящий из галактозы, глюкозы и фруктозы, содержится в сахарной свекле. Является невосстанавливающим трисахаридом. Другие трисахариды (генцианоза, мелецитоза, маннинотриоза, целлотриоза, плантеоза) встречаются чрезвычайно редко. Тетрасахарид стахиоза состоит из двух остатков галактозы, одного остатка глюкозы и одного остатка фруктозы. Стахиоза содержится в семенах люпина, сои, гороха, невосстанавливающий тетрасахарид. Циклические олигосахариды – циклодекстрины образуются при гидролизе крахмала под действием амилазы. Состоят из 6… 10 остатков D глюкозы, связанных 1, 4 гликозидными связями. Циклодекстрины образуют цветные комплексы с йодом, причём молекулы йода лежат внутри полости циклодекстрина.

Полисахариды или полиозы – это высокомолекулярные углеводы. По химической природе это полигликозиды. В молекулах полисахаридов много остатков моносахаридов связаны друг с другом гликозидными связями. При этом для связи с предыдущим остатком новый остаток предоставляет спиртовую гидроксильную группу, чаще всего при 4 м или 6 м атомах углерода. Для связи с последующим остатком предыдущий остаток предоставляет гликозидный (полуацетальный) гидроксил. В полисахаридах растительного происхождения в основном осуществляются (1 4) и (1 6) связи. Полисахаридные цепи могут быть разветвлёнными или неразветвлёнными (линейными). Полисахариды гидролизуются в кислой среде и устойчивы к гидролизу в кислой среде. Полный гидролиз приводит к образованию моносахаридов или их производных, неполный – к ряду промежуточных олигосахаридов, в том числе и дисахаридов. Гомополисахариды состоят из остатков одного моносахарида, например: крахмал, целлюлоза, гликоген и др. Гетерополисахариды состоят из остатков разных моносахаридов. Гетерополисахариды в организме связаны с белками и образуют сложные надмолекулярные комплексы. Примерами гетерополисахаридов могут служить гиалуроновая кислота и гепарин.

Крахмал является главным запасным питательным веществом растений. Гомополисахариды крахмала делятся на две фракции: амилозу (15 25%) и амилопектин (75 85%). Амилоза (С 6 Н 10 О 5)n. Полисахариды амилозы представляют собой неразветвленные или малоразветвленные цепочки, содержащие около 200 остатков глюкозы. Амилоза имеет кристаллическое строение. Растворима в горячей воде, но при стоянии растворов вскоре выпадает в осадок. Дает с йодом синее окрашивание. Легко гидролизуется ферментам и кислотами до мальтозы и глюкозы. Амилопектин (C 6 H 10 О 5)n. Молекулы амилопектина более сложны, чем амилозы. Они представляют собой сильно разветвленные цепи, содержащие около 4000 остатков глюкозы и 0, 4% фосфорной кислоты. Амилопектин в горячей воде не растворяется, но сильно набухает дает клейстер. Йодом окрашивается в фиолетовый цвет.

Целлюлоза (клетчатка) Целлюлоза или клетчатка – наиболее распространенный растительный полисахарид. Она выполняет роль опорного материала растений. В хлопке содержится почти 100 % целлюлозы, в древесине – 50… 70 %. Целлюлоза построена из остатков β D глюкопиранозы, которые связаны между собой β(1 4) гликозидными связями. Цепь не имеет разветвлений, в ней содержится 2500 12000 β D глюкозных остатков (молекулярная масса 0, 4 2 млн). Цепь целлюлозы имеет вид нити, спиралеобразно закрученной вокруг своей оси и удерживаемой в таком положении водородными связями гидроксилов остатков глюкозы. Отдельные нити соединяются межмолекулярными водородными связями в пучки, имеющие характер волокон. Это обеспечивает особые механические свойства клетчатки высокую прочность и упругость целлюлозы, отсутствие растворимости в большинстве растворителей. Благодаря наличию свободных спиртовых гидроксильных групп целлюлоза способна реагировать со спиртами и кислотами с образованием эфиров. Из растворов ацетата целлюлозы в ацетоне изготовляют ацетатное волокно. Клетчатка легко гидролизуется кислотами. Продуктами гидролиза являются целлодекстрины, целлобиоза и глюкоза. Целлюлоза не расщепляется ферментами желудочно кишечного тракта человека и не может быть питательным веществом, но способствует регулированию функции желудочно кишечного тракта, стимулирует перистальтику толстого кишечника.

Пектиновые вещества содержатся в плодах и овощах, для них характерно желеобразование в присутствии органических кислот, что используется в пищевой промышленности для изготовления желе и мармеладов. В основе пектиновых веществ лежит пектовая полигалактуроновая кислота. Пектовая кислота состоит из остатков D галактуроновой кислоты, связанных (1 4) гликозидной связью. Некоторые пектиновые вещества оказывают противоязвенное действие и являются основой ряда препаратов, например, плантаглюцид из подорожника.

Гетерополисахариды Альгиновые кислоты содержатся в бурых водорослях. Неразветвленная цепь построена из соединенных (1 4) связями остатков D маннуроновой и L гулуроновой кислот. Альгиновые кислоты как гелеобразователи используются в пищевой промышленности. Морские водоросли служат источником многих полисахаридов. Например, широко применяемый в биохимических исследованиях агар представляет собой гетерополисахарид, содержащий большое число сульфатных групп. Агар состоит из смеси агарозы и агаропектина. В полисахаридной цепи агарозы чередуются остатки D галактозы и L лактозы. Полисахариды соединительной ткани. Соединительная ткань распределена по всему организму и обусловливает прочность и упругость органов, эластичность их соединения, стойкость к проникновению инфекций. Полисахариды соединительной ткани связаны с белками. Наиболее полно изучены хондроитинсульфаты (кожа, хрящи, сухожилия), гиалуроновая кислота (стекловидное тело глаза, пуповина, хрящи, суставная жидкость), гепарин (печень). Эти полисахариды обладают общими чертами в строении: их неразветвленные цепи построены из дисахаридных остатков, в состав которых входят уроновые кислоты (D глюкуроновая, D галактуроновая, L идуроновая) и N ацетилгексозамины (N ацетилглюкозамин, N ацетилгалактозамин). Некоторые из них содержат остатки серной кислоты.

Строение некоторых гетерополисахаридов Гиалуроновая кислота построена из дисахаридных остатков, соединенных (1 4) гликозидными связями. Дисахаридный фрагмент состоит из остатков D глюкуроновой кислоты и N ацетил О глюкозамина, связанных (1 3) гликозидной связью. Гиалуроновая кислота имеет большую молекулярную массу – 2 7 млн. , растворы обладают высокой вязкостью, с чем связывают её барьерную функцию, обеспечивающую непроницаемость соединительной ткани для патогенных микроорганизмов. Xондроитинсульфаты состоят из дисахаридных остатков N ацетилированного хондрозина, соединенных (1 4) гликозидными связями. В состав хондрозина входят D глюкуроновая кислота и D галактозамин, связанные между собою (1 3) гликозидной связью. Сульфатная группа образует эфирную связь с гидроксильной группой N ацетил О галактозамина, находящейся либо в 4 м, либо в 6 м положении, Молекулярная масса хондроитинсульфатов составляет 10 000 60 000. Хондроитинсульфаты и гиалуроновая кислота содержатся не в свободном, а в связанном виде с полипептидными цепями.

Мотивация цели. Моносахариды содержатся во всех живых организмах и имеют важное биологическое значение. Остатки моносахаридов входят в состав молекул нуклеиновых кислот, сердечных гликозидов, коферментов. Некоторые моносахариды используются для получения лекарственных препаратов.Полисахариды выполняют различные функции: энергетическую (крахмал, гликоген), скелетную (хондроитинсульфаты, гликопротеиды), являются биорегуляторами (гепарин) и др. Гетерополисахариды участвуют в построении групповых веществ крови и тканей.

Цель самоподготовки. Необходимо усвоить стереоизомерию и таутомерные превращения моносахаридов, химические свойства моно-, ди- и полисахаридов.

План изучения темы

1. Классификация углеводов. Классификация моносахаридов по количеству атомов углерода в цепи и по характеру оксогруппы. Примеры

2. Стереоизомерия моносахаридов. Энантиомеры, определение относительной конфигурации. Диастереомеры.

2. Цикло-оксо-таутомерия моносахаридов на примере глюкозы, галактозы, фруктозы, рибозы и дезоксирибозы. α- и β-аномеры.

3. Свойства моносахаридов, обусловленные открытой таутомерной формой (оксо-формой).

3.1. Реакции окисления моносахаридов в разных условиях. Использование реакций окисления для идентификации моносахаридов.

3.2. Реакции восстановления моносахаридов. Получение ксилита и сорбита. Их значение.

3.3. Качественная реакция на фруктозу (реакция Селиванова).

4. Реакции циклических форм моносахаридов.

4.1. Реакции по полуацетальному гидроксилу. Образование O- и N-гликозидов, их номенклатура. Условия гидролиза гликозидов.

4.2. Реакции по спиртовым гидроксилам.

Реакции моносахаридов как многоатомных спиртов (взаимодействие с Cu(OH) 2);

Образование фосфатов моносахаридов.

5. Отдельные представители моносахаридов и их производных, их значение.

5.1. Пентозы – ксилоза, рибоза, дезоксирибоза, гексозы – глюкоза, манноза, галактоза, фруктоза.

5.2. Аминосахара – глюкозамин, галактозамин.

5.3. Аскорбиновая кислота

6. Строение дисахаридов Мальтоза, целлобиоза, лактоза, сахароза. Их моносахаридный состав, тип гликозидной связи.

7. Химические свойства дисахаридов.

7.1. Реакции образования гликозидов.

7.2. Отношение дисахаридов к гидролизу. Условия гидролиза.

7.3. Медико-биологическое значение дисахаридов.

8. Строение и свойства гомополисахаридов.

8.1. Строение фракций крахмала (амилозы и амилопектина), гликогена, целлюлозы. Их биологическое значение.



8.2. Гидролиз полисахаридов, его условия.

8.3. Первичная и вторичная структура амилозы и целлюлозы. Зависимость их физических и химических свойств от вторичной структуры.

9. Понятие о гетерополисахаридах.

«Учебно-методическое пособие для самоподготовки к занятиям по биоорганической химии» с.-151-157, 165-167.

Вопросы для самоконтроля №№ 1, 2, 4, 5 (с.152-153), 6 (с.166). Письменно ответить на вопросы 6 (с.153), 5 (с.166)

Для подготовки к тесту используйте вопросы для тестового контроля №№ 1-6, 9, 11, 13-18, 20, 24, 27, 31-43 (с. 157-164), 2-7, 11, 12, 15-17, 21, 35, 41, 49 (с. 168-176).

Занятие № 7

Природные α-аминокислоты, пептиды, белки.

Строение, свойства, биологическая роль.

Мотивация цели. Аминокислоты играют важную роль в живом организме как мономеры для построения молекул пептидов и белков. Кроме того, они являются материалом для биосинтеза многих ферментов, гормонов, витаминов, антибиотиков, медиаторов. Отдельные аминокислоты используются как лекарственные препараты (цистеин, метионин, глутаминовая кислота). Пептиды выполняют в организме регуляторную функцию (гормоны, антибиотики). Белки составляют материальную основу химической деятельности клетки (ферменты, гормоны, структурные, транспортные защитные белки).

Цель самоподготовки. Необходимо усвоить классификацию и строение наиболее часто встречающихся α-аминокислот, химические превращения α-аминокислот in vitro и in vivo , принципы строения пептидов, пространственную организацию молекул белка.

Для подготовки к занятию необходимо использовать «Учебно-методическое пособие для самоподготовки к занятиям по биоорганической химии» с.-176-180.

План изучения темы – вопросы 1-5 (без 4.4) (с.176-177).

Вопросы для самоконтроля №№ 1- 10 (с.177-178). Письменно ответить на вопросы 2, 6, 9 (с.177-178).

Для подготовки к тесту используйте вопросы для тестового контроля №№ 1 – 54, 56, 57 (с.181-190).

Углеводы - органические вещества, молекулы которых состоят из атомов углерода, водорода и кислорода, причем водород и кислород находятся в них, как правило, в таком же соотношении, как и в молекуле воды (2: 1).

Общая формула углево­дов - С n (Н 2 О) m , т. е. они как бы состоят из углерода и во­ды, отсюда и название клас­са, которое имеет историче­ские корни. Оно появилось на основе анализа первых известных углеводов. В даль­нейшем было установлено, что имеются углеводы, в мо­лекулах которых не соблюда­ется указанное соотношение (2: 1), например дезоксирибоза - С 5 Н 10 О 4 . Извест­ны также органические соединения, состав кото­рых соответствует приведенной общей формуле, но которые не принадлежат к классу углеводов. К ним относятся, например, формальдегид СН 2 О и уксус­ная кислота СН 3 СООН.

Однако название «углеводы» укоренилось и в настоящее время является общепризнанным для этих веществ.

Углеводы по их способности гидролизоваться можно разделить на три основные группы: моно-, ди- и полисахариды.

Моносахариды - углеводы, которые не гидро­лизуются (не разлагаются водой). В свою очередь, в зависимости от числа атомов углерода, моноса­хариды подразделяются на триозы (молекулы ко­торых содержат три углеродных атома), тетрозы (четыре углеродных атома), пентозы (пять), гексозы (шесть) и т. д.

В природе моносахариды представлены преиму­щественно пентозами и гексозами .

К пентозам относятся, например, рибоза - С 5 Н 10 О 5 и дезоксирибоза (рибоза, у которой «от­няли» атом кислорода) - С 5 Н 10 О 4 . Они входят в состав РНК и ДНК и опре­деляют первую часть назва­ний нуклеиновых кислот.

К гексозам , имеющим об­щую молекулярную формулу С 6 Н 12 О 6 , относятся, например, глюкоза, фруктоза, галактоза.


Дисахариды - углево­ды, которые гидролизуются с образованием двух моле­кул моносахаридов, напри­мер гексоз. Общую формулу подавляющего большинства дисахаридов вывести несложно: нужно «сложить» две формулы гексоз и «вычесть» из получившейся формулы молекулу воды - С 12 Н 22 О 11 . Соответствен­но можно записать и общее уравнение гидролиза:

К дисахаридам относятся:

1. Сахароза (обычный пищевой сахар), которая при гидролизе образует одну молекулу глюкозы и молекулу фруктозы. Она содержится в большом количестве в сахарной свекле, сахарном тростнике (отсюда и названия - свекловичный или трост­никовый сахар), клене (канадские первопроходцы добывали кленовый сахар), сахарной пальме, ку­курузе и т. д.

2. Мальтоза (солодовый сахар), которая гидро­лизуется с образованием двух молекул глюкозы. Мальтозу можно получить при гидролизе крахмала под действием ферментов, содержащихся в соло­де, - пророщенных, высушенных и размолотых зернах ячменя.

3. Лактоза (молочный сахар), которая гидроли­зуется с образованием молекул глюкозы и галак­тозы. Она содержится в молоке млекопитающих (до 4-6 %), обладает невысокой сладостью и ис­пользуется как наполнитель в драже и аптечных таблетках.

Сладкий вкус разных моно- и дисахаридов раз­личен. Так, самый сладкий моносахарид - фрук­тоза - в 1,5 раза слаще глюкозы, которую при­нимают за эталон. Сахароза (дисахарид), в свою очередь, в 2 раза слаще глюкозы и в 4-5 раз - лактозы, которая почти безвкусна.

Полисахариды - крахмал, гликоген, декстри­ны, целлюлоза и т. д. - углеводы, которые гидро­лизуются с образованием множества молекул моно­сахаридов, чаще всего глюкозы.

Чтобы вывести формулу полисахаридов, нуж­но от молекулы глюкозы «отнять» молекулу во­ды и записать выражение с индексом n: (С 6 Н 10 О 5) n , ведь именно за счет отщепления молекул воды в природе образуются ди- и полисахариды.

Роль углеводов в природе и их значение для жизни человека чрезвычайно велики. Образуясь в клетках растений в результате фотосинтеза, они выступают источником энергии для клеток живот­ных. В первую очередь это относится к глюкозе.

Многие углеводы (крахмал, гликоген, сахаро­за) выполняют запасающую функцию, роль резерва питательных веществ .

Кислоты РНК и ДНК, в состав которых входят некоторые углеводы (пентозы-рибозы и дезоксирибоза), выполняют функции передачи наследствен­ной информации.

Целлюлоза - строительный материал расти­тельных клеток - играет роль каркаса для оболо­чек этих клеток. Другой полисахарид - хитин - выполняет аналогичную роль в клетках некоторых животных: образует наружный скелет членистоно­гих (ракообразных), насекомых, паукообразных.

Углеводы служат в конечном итоге источником нашего питания: мы потребляем зерно, содержа­щее крахмал, или скармливаем его животным, в организме которых крахмал превращается в бел­ки и жиры. Самая гигиеничная одежда изготовле­на из целлюлозы или продуктов на ее основе: хлоп­ка и льна, вискозного волокна, ацетатного шелка. Деревянные дома и мебель построены из той же целлю­лозы, образующей древесину.

В основе производства фото- и кинопленки - все та же целлюлоза. Книги, газеты, письма, денежные банкно­ты - все это продукция цел­люлозно-бумажной промышленности. Значит, углеводы обеспечивают нас всем необходимым для жизни: пищей, одеждой, кровом.

Кроме того, углеводы участвуют в построении сложных белков, ферментов, гормонов. Углевода­ми являются и такие жизненно необходимые веще­ства, как гепарин (он играет важнейшую роль - предотвращает свертывание крови), агар-агар (его получают из морских водорослей и применяют в микробиологической и кондитерской промыш­ленности - вспомните знаменитый торт «Птичье молоко»).

Необходимо подчеркнуть, что единственным видом энергии на Земле (помимо ядерной, разуме­ется) является энергия Солнца, а единственным способом ее аккумулирования для обеспечения жизнедеятельности всех живых организмов явля­ется процесс фотосинтеза , протекающий в клетках живых растений и приводящий к синтезу угле­водов из воды и углекислого газа. Именно при этом превращении образуется кислород, без ко­торого жизнь на нашей планете была бы невозможна:

Моносахариды. Глюкоза

Глюкоза и фруктоза - твердые бесцветные кристаллические вещества. Глюкоза содержится в соке винограда (отсюда название «виноградный сахар») вместе с фруктозой, которая содержится в некоторых фруктах и плодах (отсюда название «фруктовый сахар»), составляет значительную часть меда. В крови человека и животных посто­янно содержится около 0,1 % глюкозы (80-120 мг в 100 мл крови). Большая ее часть (около 70 %) подвергается в тканях медленному окислению с выделением энергии и образованием конечных продуктов - углекислого газа и воды (процесс гли­колиза):

Энергия, выделяемая при гликолизе, в значи­тельной степени обеспечивает энергетические по­требности живых организмов.

Превышение содержания глюкозы в крови уровня 180 мг в 100 мл крови свидетельствует о нарушении углеводного обмена и развитии опас­ного заболевания - сахарного диабета.

Строение молекулы глюкозы

О строении молекулы глюкозы можно судить на основании опытных данных. Она реагирует с карбоновыми кислотами, образуя сложные эфи­ры, содержащие от 1 до 5 остатков кислоты. Ес­ли раствор глюкозы прилить к свежеполученно­му гидроксиду меди (II), то осадок растворяется и образуется ярко-синий раствор соединения меди, т. е. происходит качественная реакция на много­атомные спирты. Следовательно, глюкоза является многоатомным спиртом. Если же подогреть полу­ченный раствор, то вновь выпадет осадок, но уже красноватого цвета, т. е. произойдет качественная реакция на альдегиды. Аналогично, если раствор глюкозы нагреть с аммиачным раствором оксида серебра, то произойдет реакция «серебряного зер­кала». Следовательно, глюкоза является одновре­менно многоатомным спиртом и альдегидом - алъдегидоспиртом. Попробуем вывести структурную формулу глюкозы. Всего атомов углерода в моле­куле C 6 H 12 O 6 шесть. Один атом входит в состав альдегидной группы :

Остальные пять атомов связываются с пятью гидроксигруппами.

И наконец, атомы водорода в молекуле распре­делим с учетом того, что углерод четырехвалентен:

Однако установлено, что в растворе глюко­зы помимо линейных (альдегидных) молекул существуют молекулы циклического строения, из которых состоит кристаллическая глюкоза. Превращение молекул линейной формы в цикли­ческую можно объяснить, если вспомнить, что атомы углерода могут свободно вращаться вокруг σ-связей, расположенных под углом 109° 28′. При этом альдегидная группа (1-й атом углерода) мо­жет приблизиться к гидроксильной группе пятого атома углерода. В первой под влиянием гидрокси- группы разрывается π-связь: к атому кислорода присоединяется атом водорода, и «потерявший» этот атом кислород гидроксигруппы замыкает цикл:

В результате такой перегруппировки атомов образуется циклическая молекула. Циклическая формула показывает не только порядок связи ато­мов, но и их пространственное расположение. В ре­зультате взаимодействия первого и пятого атомов углерода появляется новая гидроксигруппа у пер­вого атома, которая может занять в пространстве два положения: над и под плоскостью цикла, а по­тому возможны две циклические формы глюкозы:

а) α-форма глюкозы - гидроксильные группы при первом и втором атомах углерода располо­жены по одну сторону кольца молекулы;

б) β-форма глюкозы - гидроксильные группы на­ходятся по разные стороны кольца молекулы:

В водном растворе глюкозы в динамическом равновесии находятся три ее изомерные формы - циклическая α-форма, линейная (альдегидная) форма и циклическая β-форма:

В установившемся динамическом равновесии преобладает β-форма (около 63 %), так как она энер­гетически предпочтительнее - у нее OH-группы у первого и второго углеродных атомов по разные стороны цикла. У α-формы (около 37 %) OH-группы у тех же углеродных атомов расположены по одну сторону плоскости, поэтому она энергетически ме­нее устойчива, чем β-форма. Доля же линейной фор­мы в равновесии очень мала (всего около 0,0026 %).

Динамическое равновесие можно сместить. На­пример, при действии на глюкозу аммиачного рас­твора оксида серебра количество ее линейной (аль­дегидной) формы, которой в растворе очень мало, пополняется все время за счет циклических форм, и глюкоза полностью подвергается окислению до глюконовой кислоты.

Изомером альдегидоспирта глюкозы является кетоноспирт - фруктоза :

Химические свойства глюкозы

Химические свойства глюкозы, как и любого другого органического вещества, определяются ее строением. Глюкоза обладает двойственной функ­цией, являясь и альдегидом , и многоатомным спиртом , поэтому для нее характерны свойства и много­атомных спиртов, и альдегидов.

Реакции глюкозы как многоатомного спирта.

Глюкоза дает качественную реакцию много­атомных спиртов (вспомните глицерин) со свеже­полученным гидроксидом меди (II), образуя ярко­-синий раствор соединения меди (II).

Глюкоза, подобно спиртам, может образовывать сложные эфиры.

Реакции глюкозы как альдегида

1. Окисление альдегидной группы . Глюкоза как альдегид способна окисляться в соответствующую (глюконовую) кислоту и давать качественные ре­акции альдегидов.

Реакция «серебряного зеркала»:

Реакция со свежеполученным Cu(OH) 2 при на­гревании:

Восстановление альдегидной группы . Глю­коза может восстанавливаться в соответствующий спирт (сорбит):

Реакции брожения

Эти реакции протекают под действием особых биологических катализаторов белковой приро­ды - ферментов.

1. Спиртовое брожение:

издавна применяемое человеком для получения этилового спирта и алкогольных напитков.

2. Молочнокислое брожение:

которое составляет основу жизнедеятельности мо­лочнокислых бактерий и происходит при скиса­нии молока, квашении капусты и огурцов, силосо­вании зеленых кормов.\

Химические свойства глюкозы - конспект

Полисахариды. Крахмал и целлюлоза.

Крахмал - белый аморфный порошок, не рас­творяется в холодной воде. В горячей воде он раз­бухает и образует коллоидный раствор - крах­мальный клейстер.

Крахмал содержится в цитоплазме раститель­ных клеток в виде зерен запасного питательного вещества. В картофельных клубнях содержится около 20 % крахмала, в пшеничных и кукуруз­ных зернах - около 70 %, а в рисовых - почти 80 %.

Целлюлоза (от лат. cellula - клетка), выделен­ная из природных материалов (например, вата или фильтровальная бумага), представляет собой твер­дое волокнистое вещество, нерастворимое в воде.

Оба полисахарида имеют растительное проис­хождение, однако играют в клетке растений разную роль: целлюлоза - строительную, конструкционную функцию, а крахмал - запасающую. Поэтому цел­люлоза является обязательным элементом клеточ­ной оболочки растений. Волокна хлопка содержат до 95 % целлюлозы, волокна льна и конопли - до 80 %, а в древесине ее содержится около 50 %.

Строение крахмала и целлюлозы

Состав этих полисахаридов можно выразить общей формулой (C 6 H 10 O 5) n . Число повторяю­щихся звеньев в макромолекуле крахмала может колебаться от нескольких сотен до нескольких тысяч. Целлюлоза же отли­чается значительно большим числом звеньев и, следова­тельно, молекулярной мас­сой, которая достигает не­скольких миллионов.

Различаются углеводы не только молекулярной мас­сой, но и структурой. Для крахмала характерны два вида структур макромолекул: линейная и развет­вленная. Линейную структуру имеют более мел­кие макромолекулы той части крахмала, которую называют амилозой, а разветвленную структуру имеют молекулы другой составной части крахма­ла - амилопектина.

В крахмале на долю амилозы приходится 10- 20 %, а на долю амилопектина - 80-90 %. Ами­лоза крахмала растворяется в горячей воде, а ами­лопектин только набухает.

Структурные звенья крахмала и целлюлозы по­строены по-разному. Если звено крахмала вклю­чает остатки α-глюкозы , то целлюлоза - остатки β-глюкозы , ориентированные в природные волок­на:

Химические свойства полисахаридов

1. Образование глюкозы. Крахмал и целлюлоза подвергаются гидролизу с образованием глюкозы в присутствии минеральных кислот, например сер­ной:

В пищеварительном тракте животных крахмал подвергается сложному ступенчатому гидролизу:

Организм человека не приспособлен к перева­риванию целлюлозы, так как не имеет ферментов, необходимых для разрыва связей между остатка­ми β-глюкозы в макромолекуле целлюлозы.

Лишь у термитов и жвачных животных (на­пример, коров) в пищеварительной системе живут микроорганизмы, вырабатывающие необходимые для этого ферменты.

2. Образование сложных эфиров . Крахмал мо­жет образовывать эфиры за счет гидроксигрупп, однако эти эфиры не нашли практического при­менения.

Каждое звено целлюлозы содержит три свобод­ных спиртовых гидроксигруппы. Поэтому общую формулу целлюлозы можно записать таким обра­зом:

За счет этих спиртовых гидроксигрупп целлю­лоза и может образовывать сложные эфиры, которые широко применяются.

При обработке целлюлозы смесью азотной и сер­ной кислот получают в зависимости от условий мо­но-, ди- и тринитроцеллюлозу:

Применение углеводов

Смесь моно- и динитроцеллюлозы называют коллоксилином . Раствор коллоксилина в смеси спирта и диэтилового эфира - коллодий - приме­няют в медицине для заклеивания небольших ран и для приклеивания повязок к коже.

При высыхании раствора коллоксилина и камфа­ры в спирте получается целлулоид - одна из пласт­масс, которая впервые стала широко использовать­ся в повседневной жизни человека (из нее делают фото- и кинопленку, а также различные предметы широкого потребления). Растворы коллоксилина в органических растворителях применяются в каче­стве нитролаков. А при добавлении к ним красите­лей получаются прочные и эстетичные нитрокраски, широко используемые в быту и технике.

Как и другие органические вещества, содержа­щие в составе молекул нитрогруппы, все виды ни­троцеллюлозы огнеопасны. Особенно опасна в этом отношении тринитроцеллюлоза - сильнейшее взрывчатое вещество. Под названием «пирокси­лин» она широко применяется для производства оружейных снарядов и проведения взрывных ра­бот, а также для получения бездымного пороха.

С уксусной кислотой (в промышленности для этих целей используют более мощное этерифицирующее вещество - уксусный ангидрид) получают аналогичные (ди- и три-) сложные эфиры целлюло­зы и уксусной кислоты, которые называются аце­тилцеллюлозой :

Ацетилцеллюлозу используют для получения лаков и красок, она служит также сырьем для из­готовления искусственного шелка. Для этого ее рас­творяют в ацетоне, а затем этот раствор продавлива­ют через тонкие отверстия фильер (металлических колпачков с многочисленными отверстиями). Выте­кающие струйки раствора обдувают теплым возду­хом. При этом ацетон быстро испаряется, а высыха­ющая ацетилцеллюлоза образует тонкие блестящие нити, которые идут на изготовление пряжи.

Крахмал , в отличие от целлюлозы, дает синее окрашивание при взаимодействии с йодом. Эта ре­акция является качественной на крахмал или йод в зависимости от того, наличие какого вещества требуется доказать.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости