Сравнение авиации рф и сша. Олимпиада по истории авиации и воздухоплавания Размеры боевых самолетов в сравнении

Современные военные самолеты стремительными шагами продвигаются вперед, расширяя свои возможности и привлекая все новые силы.

Современные отечественные боевые самолеты мира обязаны своим появлением развитию и популяризации авиации, которой во многом способствовали полеты летчиков Н. Попова, М. Ефимова, А. Шиукова, С. Уточкина, Б. Российского и такие талантливые конструкторы, как И. Сикорский, Я. Гаккель, В. Слесарев, И. Стеглау.

На нашем портале сайт каждый желающий сможет провести сравнение боевых самолетов в несколько кликов. Эта процедура не доставит Вам никакой сложности, так как она предельно проста.

Современная авиация по мере количественного роста и развития воздушного флота имеет все большую роль в выполнении боевых операций. Одновременно с широким использованием самолетов днем при хорошей погоде их стали использовать и ночью в сложных метеоусловиях. Операции сухопутных войск всегда выполнялись при активном участии авиатехники, оказывающей поддержку в ходе боевых действий. Она прикрывала войска от ударов авиации и воздушной разведки врага, поддерживала пехоту, вела воздушную разведку.

С начала использования самолетов на боле боя их роль в конфликтах постоянно растет. Причем это особенно касается последних 30-50 лет. Военные самолеты из года в год получают все более мощные средства ведения боя, более совершенную электронику, увеличивается их скорость, уменьшается их заметность на экранах радаров. На сегодняшний день авиация способна решить ход конфликта в одиночку или сыграть в нем ключевую роль. В военной отрасли человечества такого еще никогда ранее не было.

С появлением новых систем связи, высокоточных боеприпасов и спутниковой навигации/целеуказания мощь и роль военно-воздушных сил очень возросли. Современные и перспективные боевые самолеты тоже сильно изменяются. Использование двигателей новых конструкций, современных материалов, сложной электротехники позволяет называть боевой самолет нового поколения венцом научно-технического прогресса.

На сегодняшний день многие авиационные страны занимаются разработкой истребителя пятого поколения, кроме США, так как Америка уже располагает истребителями F-35 Lightning и F-22 Raptor. Они давно прошли испытания и приняты на вооружение. Китай, Япония и Россия пока отстают в данном вопросе.

Сегодня в тактике ведения боя все больше внимания уделяется истребительной технике, которая отвечает за создание бесполетных зон, сопровождение самолетов и кораблей, противовоздушную оборону противника. Поэтому доля авиатехники в общем объеме торговли оружием – практически 50%. сайт предлагает выполнить сравнение боевых самолетов, что отнимет у Вас несколько минут, выиграв массу времени, которое было бы потрачено на поиски всей информации. Одновременно можно сравнить не больше четырех военных самолетов.

Долгое время основными задачами, которые ложились на «плечи» истребителей, являлось завоевание господства в воздухе, защита сухопутных объектов от воздушных сил противника, сопровождение самолетов гражданской и военной авиации и реже – нанесение ударов по разным наземным целям противника.

На сегодняшний день истребители стали более функциональными, способными наносить мощные удары как по наземной инфраструктуре противника, так и по авиации. Если раньше они были только оборонительным видом оружия, то сейчас их стали чаще применять в наступательном качестве.

С каждым годом перспективная мировая и русская авиация получает толчок по развитию нанотехнологий во всем мире. Самолеты совершенствуются, растет скорость, мощность и высота полета, учитывается дальность и грузоподъемность действия. К тому же большие возможности позволили открыть использование новых материалов. Конструкторы во многих странах мира настойчиво ищут пути для достижения высоких скоростей полета.

Сравнение истребителей разного поколения – давно является самой бездонной темой. Огромное количество форумов и публикаций склоняют чашу весов, как в одну, так и в другую сторону.

Не имея собственного серийного истребителя пятого поколения (подчеркиваю – серийного), практически 99% форумных баталий и публикаций различных авторов в РФ сводятся к тому, что наши машины поколения 4+, 4++ прекрасно справляются с давно серийной машиной F-22. До показа широкой публике Т-50, еще не было даже примерно понятно, что эта машина будет собой представлять. Большинство публикаций в России сводились к тому, что и так проблем нет. Наши «четверки» положат на лопатки «Раптор» без особых проблем или, по крайней мере, будут не хуже.

В 2011 после показа на МАКС, ситуация с Т-50 стала проясняться, и уже его стали сравнивать с серийным F-22. Теперь большинство публикаций и форумных споров склонялось к тотальному превосходству машины Сухого. Если мы с нашими «четверками» проблем не знали, то, что говорить о «пятерке». С этой логикой сложно спорить.

Однако такое единодушие не наблюдается в западных СМИ. Если преимущество Су-27 над F-15C там более-менее признали, то F-22 всегда выходит вне конкуренции. Не сильно расстраивает западных аналитиков и поколение машин 4+, 4++. Все сходятся во мнении, что они не смогут в полной мере составить конкуренцию F-22.

С одной стороны каждый хвалит свое болото – это вполне логично, но с другой стороны, хочется проследить логику и тех и других. Наверняка у каждого есть своя правда, имеющая право на существование.

В 50-е, 70-е годы дискутировать о том, к какому поколению относится та или иная машина, было весьма не благодарным занятием. Многие старые машины модернизировались и подтягивали свой потенциал к более современным. Однако четвертое поколение уже можно обрисовать достаточно точно. Не в последнюю очередь на его концепцию повлияла война во Вьетнаме (уже никто не рассуждал, что пушка не нужна, и никто не полагался только на дальний бой).

Машина четвертого поколения должна обладать высокой маневренностью, сильной РЛС, возможностью применять управляемое оружие, обязательно двухконтурными двигателями.

Первым представителем четвертого поколения стал палубный F-14. Машина обладала рядом явных преимуществ, но была, пожалуй, аутсайдером среди самолетов 4-го поколения. Сейчас ее уже нет в строю. В 1972 свой первый полет совершил истребитель F-15. Это был именно самолет завоевания превосходства в воздухе. Со своими функциями он справлялся превосходно, и равной ему машины в те годы не было ни у кого.

В 1975 совершил первый полет наш истребитель четвертого поколения – Миг-31. Однако он, в отличие от всех остальных четверок, не мог вести полноценный маневренный воздушный бой. Конструкция самолета не предполагала серьезных перегрузок, которые неизбежны при активном маневрировании. В отличие от всех «четверок», эксплуатационная перегрузка которых достигала 9G, Миг-31 выдерживал только 5G. Поступив на серийное производство в 1981, через пять лет после F-15, он не являлся истребителем, а был именно перехватчиком. Его ракеты обладали большой дальностью, но были не способны поражать высокоманевренные цели, такие как F-15, F-16 (причину этого рассмотрим ниже). Задачей Миг-31 была борьба с разведчиками и бомбардировщиками противника. Возможно, отчасти, благодаря уникальной на тот момент РЛС, он мог выполнять функции командного пункта.

В 1974 совершает первый полет, а в 1979 поступает на вооружение еще один истребитель четвертого поколения F-16. На нем впервые применена интегральная компоновка, когда фюзеляж вносит свой вклад в создание подъемной силы. Однако F-16 не позиционируется как самолет завоевания превосходства в воздухе, эту участь полностью оставляют тяжелому F-15.

К тому времени у нас нечего было противопоставить Американским машинам нового поколения. Первый полет и Миг-29 состоялись в 1977 г. К тому моменту F-15 уже поступил в серийное производство. Противостоять «Орлу» должен был Су-27, однако с ним все шло не так гладко. Изначально крыло на «Сушке» было создано своими силами и получило так называемую готическую форму. Однако первый же полет показал ошибочность конструкции – готического крыла, приводившей к сильной тряске. В итоге на Су-27 пришлось в спешном порядке переделывать крыло на разработанное в ЦАГИ. Которое уже было поставлено на Миг-29. Поэтому Миг поступил в эксплуатацию немного раньше в 1983, а Су в 1985 г.

К началу серийного производства «Сушки», F-15 уже долгие девять лет полным ходом был на конвейере. Но примененная интегральная компоновка Су-27, с точки зрения аэродинамики, была более продвинутой. Также применение статической неустойчивости в какой-то мере привело к повышению маневренности. Однако, вопреки мнению многих, этот параметр не является определяющим маневренное превосходство машины. К примеру, все современные пассажирские Airbus делаются также статически неустойчивыми, и при этом они не показывают чудес маневрирования. Так, что это скорее особенность Сушки, чем явное преимущество.

С появлением машин четвертого поколения все силы были брошены на пятое. В начале 80-х особенных потеплений в холодной войне не наблюдалось, и никто не хотел потерять свои позиции в истребительной авиации. Разрабатывалась так называемая программа истребителя 90-х. Получив самолеты четвертого поколения немного раньше, американцы имели в ней преимущество. Уже в 1990, еще до полноценного развала Союза, совершил первый полет прототип истребителя пятого поколения YF-22. Его серийное производство должно было начаться в 1994, но история внесла свои коррективы.

Советский Союз распался, и главного соперника США не стало. Штаты прекрасно понимали, что современная Россия 90-х не способна создать самолет пятого поколения. Более того, не способна даже производить масштабно самолеты поколения 4+. Да и большой надобности в этом наше руководство не видело, так как запад перестал быть врагом. Поэтому темпы доведения конструкции F-22 до серийного варианта были резко снижены. Объем закупок упал с 750 машин до 648, а производство отодвинули на 1996 г. В 1997 было очередное сокращение партии до 339 машин, и одновременно стартовало серийное производство. На приемлемую мощность в 21 шт в год, завод вышел в 2003 г., однако в 2006 планы закупок сократили до 183 единиц. В 2011 был поставлен последний «Раптор».

Истребитель девяностых в нашей стране шел с опозданием от основного конкурента. Эскизный проект МИГ МФИ был защищен только в 1991 г. Развал Союза затормозил, и без того отставшую, программу пятого поколения и опытный экземпляр поднялся в небо только в 2000 г. Однако сильного впечатления он на запад не произвел. Для начала его перспективы были слишком туманны, испытаний соответствующих РЛС и доведения современных двигателей не было. Планер Мига даже визуально нельзя было отнести к СТЭЛС машинам: применение ПГО, обширное применение вертикального оперения, не показанные внутренние отсеки вооружения и т.д. Все это наводило на мысли, что МФИ лишь прототип, очень далекий от реального пятого поколения.

Благо рост цен на нефть в 2000-х дал возможность нашему государству заняться в плотную самолетом пятого поколения, с соответствующей поддержкой. Но не МИГ МФИ, не С-47 «Беркут» не стали прототипами для нового пятого поколения. Безусловно, опыт их создания был учтен, но самолет построили совершенно с нуля. Отчасти из-за большого количества спорных моментов в конструкции МФИ и С-47, отчасти из-за слишком большой взлетной массы и отсутствия подходящих двигателей. Но в итоге мы получили пока еще прототип Т-50, ибо серийное производство его не начато. Но о нем поговорим в следующей части.

Какие основные отличия от четвертого поколения должно иметь пятое? Обязательно маневренность, большая тяговооруженность, более совершенная РЛС, многофункциональность и малая заметность. Перечислять разные отличия можно долго, но на самом деле все это далеко не важно. Важно лишь то, что пятое поколение должно иметь решающие преимущества над четвертым, а как — это уже вопрос к конкретному самолету.

Пора перейти к непосредственному сравнению самолетов четвертого и пятого поколения. Воздушное столкновение можно условно разделить на два этапа – это дальний воздушный бой и ближний воздушный бой. Рассмотрим каждый из этапов по отдельности.

Дальний воздушный бой

Что важно при дальнем столкновении. Во-первых, это осведомленность от внешних источников (самолеты ДРЛО, наземные станции локации), что не зависит от самолета. Во-вторых, мощность РЛС — кто первый увидит. В-третьих, малая заметность самого самолета.

Самый большой раздражитель общественного мнения в РФ – это малая заметность. Только ленивый не высказывался по этому поводу. Как только не кидали камни в сторону F-22 по поводу его малой заметности. Можно привести ряд аргументов стандартного Российского Патриота:
— его прекрасно видят наши старые метровые радары, F-117 же сбили Югославы;
— его прекрасно видят наши современные радары от С-400/С-300;
— его прекрасно видят современные радары самолетов 4++;
— как только он включит свой радар – его тут же заметят и собьют;
— и т.д. и т. п. …

Смысл у этих аргументов один: «Раптор» ни что иное, как распил бюджета! Глуповатые Американцы вложили кучу денег в технологию «малой заметности», которая совершенно не работает. Но попытаемся разобраться в этом более детально. Для начала, мне больше всего интересно, какое дело стандартному Российскому Патриоту до бюджета США? Может он очень любит эту страну, и не видит в ней врага как остальное большинство?

По этому поводу есть замечательная фраза Шекспира: «Грехи других судить вы так усердно рветесь, начните со своих и до чужих не доберетесь ».

К чему это сказано? Давайте посмотрим, что происходит в нашем авиапроме. Самый современный серийный истребитель поколения 4++ . Он, как и его прародитель Су-27, не обладал элементами СТЭЛС. Однако в нем применен ряд технологий, позволяющих снизить ЭПР без существенных изменений конструкции, т.е. хоть чуть-чуть, но уменьшили. Казалось бы зачем? И так все даже F-22 видят.

Но Су-35 – это цветочки. Готовится к серийному производству истребитель пятого поколения Т-50. И что мы видим – планер создан по технологии СТЭЛС! Широкое применение композитов, до 70% конструкции, внутренние отсеки вооружение, специальная конструкция воздухозаборника, параллельные кромки, пара пилообразных стыков. И все это ради СТЭЛС технологии. Почему тут стандартный Российский Патриот не видит противоречий. Пёс с ним с «Раптором», что делают наши? Они наступают на те же грабли? Они не учли столь очевидных ошибок и вкладывают кучу денег в НИКОР, вместо модернизации самолетов четвертого поколения?

Но и Т-50 цветочки. Есть у нас . Судно размером 135 на 16 м. Он, по заявлению ВМФ построен с использованием технологии СТЭЛС! Огромное судно водоизмещением 4500 тонн. Зачем ему малая заметность? Или авианосец типа «Джеральд Р. Форд», так неожиданно тоже использует технологию малой заметности (ну тут понятно, опять распил, наверное).

Так может стандартному Российскому Патриоту начать со своей страны, где, похоже, распил еще похлеще. Или можно попробовать немного разобраться в теме. Может наши конструкторы не зря пытаются реализовать элементы СТЭЛС, может не такой это и бесполезный распил?

Обратиться за разъяснением, прежде всего, следует к самим конструкторам. В вестнике РАН была публикация под авторством А.Н. Лагарькова и М.А. Погосяна. По крайней мере, последняя фамилия должна быть известна всем, кто читает эту статью. Позволю себе дать выжимку из этой статьи:
«Уменьшение ЭПР с 10-15 м 2 – типичного для тяжелого истребителя (Су-27, F-15) до 0,3 м 2 позволяет принципиально снизить потери авиации. Этот эффект усиливается, при добавлении к малой ЭПР средств радиоэлектронного противодействия ».
Графики из этой статьи приведены на рисунках №1 и №2.

Рисунок №1

Рисунок №2

Похоже, конструктора оказались немного умнее стандартного Российского Патриота. Вся проблема в том, что воздушный бой не представляет собой некую линейную характеристику. Если расчетным путем мы можем получить на какой дальности та или иная РЛС увидит цель с определенным ЭПР – то реальность получается немного иной. Расчет максимальной дальности определения дается в узкой зоне, когда известно место определения объекта, и вся энергия РЛС концентрируется в одном направлении.

Также у РЛС есть параметр диаграммы направленности (ДНА). Она представляет собой набор из нескольких лепестков, представлена схематически на рисунке №3. Оптимальное направление определения соответствует центральной оси главного лепестка диаграммы. Именно для него актуальны рекламные данные. Т.е. при обнаружении целей в боковых секторах, с учетом резкого уменьшения диаграммы направленности, разрешающая способность РЛС сильно падает. Поэтому оптимальный сектор обзора у реальной РЛС очень узок.

Рисунок №3

Теперь обратимся к основному уравнению радиолокации, рисунок №4. Dmax – показывает максимальную дальность определения объекта РЛС. Сигма – это есть величина ЭПР объекта. По этому уравнению мы можем рассчитать дальность обнаружения для любой, сколь угодно малой ЭПР. Т.е. с математической точки зрения все довольно просто. Для примера возьмем официальные данные по РЛС Су-35С «Ирбис». ЭПР=3 м 2 она видит на дальности в 350 км. Примем ЭПР F-22 равной 0,01 м 2 . Тогда расчетная дальность определения «Раптора» для РЛС «Ирбис» составит 84 км.

Однако это все справедливо только для описания общих принципов работы, но не применимо в полной мере в реальности. Причина зарыта в самом уравнении радиолокации. Pr.min – минимально необходимая, или пороговая мощность приемника. Приемник РЛС не способен принимать сколь угодно малый отраженный сигнал! В противном случае, он бы видел одни шумы, вместо реальных целей. Поэтому математическая дальность обнаружения, не может совпадать с реальной, так как не учитывается пороговая мощность приемника.

Рисунок №4. Основное уравнение радиолокации.

Правда сравнение Раптора с Су-35с является не совсем честным. Серийное производство Су-35с было начато в 2011 г., а в этом же году производство F-22 было закончено! До появления Су-35с «Раптор» уже целых четырнадцать лет стоял на конвейере. Более близкий по годам серийного производства к F-22 является Су-30МКИ. Он пошел в серию в 2000 г., через четыре года после «Раптора». Его радар «Барс» был способен определять ЭПР 3 м 2 на расстоянии в 120 км (это оптимистичные данные). Т.е. «Хищника» он сможет увидеть на расстоянии 29 км, и это без учета пороговой мощности.

Самым фееричным является аргумент со сбитым F-117 и метровыми антеннами. Тут обратимся к истории. В момент проведения «Бури в пустыни» F-117 совершил 1299 боевых вылетов. В Югославии F-117 совершил 850 боевых вылетов. В итоге из всех был сбит только один самолет! Причина в том, что с метровыми РЛС не все так просто как нам кажется. Мы уже говорили о диаграмме направленности. Самое точное определение – может обеспечить только узкий главный лепесток ДНА. Благо есть давно известная формула по определению ширины ДНА ф=L/D. Где L – длина волны, D – размер антенны. Именно поэтому метровые РЛС имеют широкие лепестки ДНА и не способны давать точные координаты цели. Поэтому от их использования все начали отказываться. Но метровый диапазон обладает меньшим коэффициентом затухания в атмосфере – поэтому способен просматривать дальше, чем сопоставимая по мощности РЛС сантиметрового диапазона.

Однако часты утверждения, что РЛС метрового диапазона не чувствительны к СТЭЛС технологиям. Но такие конструкции основаны на рассеивании падающего сигнала, и наклонные поверхности отражают любую волну, не зависимо от ее длины. Проблемы могут возникнуть с радиопоглощающими красками. Толщина их слоя должна быть равна нечетному числу четвертей длины волны. Тут, скорее всего, будет сложно подобрать краску и для метрового и для сантиметрового диапазона. Но самым важным параметром для определения объекта остается ЭПР. Основными факторами определяющими ЭПР являются:
— электрические и магнитные свойства материала,
— характеристики поверхности цели и угол падения радиоволн,
— относительные размеры цели, определяющиеся отношением ее длины к длине волны.

Т.е. помимо прочего, ЭПР одного и того же объекта различна при разных длинах волн. Рассмотрим два варианта:

1. Длина волны несколько метров – следовательно, физические размеры объекта меньше длины волны. Для простейших объектов, попадающих под такие условия, есть формула расчета, представленная на рисунке №5.

Рисунок №5

Из формулы видно, что ЭПР обратно пропорциональна четвертой степени длины волны. Именно поэтому большие метровые локаторы и загоризонтные РЛС не способны обнаруживать небольшие самолеты.

2. Длина волны в районе метра , что меньше физического размера объекта. Для простейших объектов, попадающих под такие условия, есть формула расчета, представленная на рисунке №6.

Рисунок №6

Из формулы видно, что ЭПР обратно пропорциональна квадрату длины волны.

Упрощая приведенные формулы в учебных целях используется более простая зависимость:

Где СИГМАнат — ЭПР которые мы хотим получить расчетным путем, СИГМАмод — ЭПР полученная экспериментально, k — коэффициент равный:

В котором Lэ — длина волны, при экспериментальном ЭПР, L — длина волны для рассчитываемой ЭПР.

Из выше изложенного можно сделать достаточно прямолинейный вывод о длинноволновых локаторах. Но картина будет не полной, если не упомянуть, как определяется ЭПР сложных объектов в реальности. Ее невозможно получить расчетным путем. Для этого используются безэховые камеры, либо поворотные стенды. На которых ЛА облучают под разным углом. Рис. №7. На выходе получается диаграмма обратного рассеивания, по которой и можно понять: где происходит засветка, и какое будет среднее значение ЭПР объекта. Рис.№8.

Рисунок №7

Рисунок №8

Как мы уже разобрались выше, и как видно из рисунка №8 при увеличении длины волны диаграмма получит более широкие и менее выраженные лепестки. Что приведет к уменьшению точности, но в тоже время и к изменению структуры полученного сигнала.

Теперь поговорим о включении радара F-22. В сети часто можно встретить мнение, что после его включения он станет прекрасно виден нашим «Сушкам» и как котенок будет расстрелян в тот же момент. Для начала у дальнего воздушного боя есть много различных вариантов события и тактик. Основные исторические примеры мы рассмотрим позже – но часто предупреждение об облучении не сможет даже спасти свою машину не то, что атаковать противника. Предупреждение может показывать тот факт, что противник уже знает примерное положение и включил радар для финальной наводки ракет.

Но подойдем к конкретике по этому вопросу. У Су-35с есть станция предупреждения об облучении Л-150-35. Рис.№9. Данная станция способна определять направление излучателя и выдавать целеуказание ракетам Х-31П (это актуально только для наземных РЛС). По направлению – мы можем понять направление излучения (в случае с ЛА зону – где противник). Но мы не можем определить его координаты, так как мощность излучаемой РЛС не постоянная величина. Для определения нужно задействовать свой радар.

Рисунок №9

Тут важно понимать одну деталь, сравнивая самолет 4-го поколения с пятым. Для радара Су-35С встречное излучение будет являться помехой. Это особенность радара АФАР F-22 – который одновременно может работать в разных режимах. Такой возможности нет у ПФАР Cу-35С. Помимо того, что Сушка получает встречную активную помеху – ей по-прежнему нужно определить и поставить на сопровождение (разные вещи, между которыми проходит определенное время!) «Раптора» с элементами СТЭЛС.

Помимо этого F-22 может действовать в зоне постановщика помех. Как выше указывалось в графиках из публикации вестника РАН, что приведет к еще большему преимуществу. На чем это основано? Точность определения есть разница между накоплением отраженного от цели сигнала и шума. Сильные шумы могут полностью забить приемник антенны или, по крайней мере, осложнить накопление Pr.min (о нем говорили выше).

Дополнительно, снижение ЭПР позволяет расширить тактику применения самолета. Рассмотрим несколько вариантов тактического действия в группах, известных из истории. Дж Стюарт в своей книге приводил ряд примеров тактики Северной Кореи во время войны:

1. Прием «Клещи»
Две группы идут на встречных курсах к противнику. После взаимной пеленгации, обе группы разворачиваются в обратном направлении (Домой). Противник пускается в погоню. Третья группа – вклинивается между первой и второй и на встречных курсах атакует противника, в то время как тот занят погоней. При этом малая ЭПР третьей группы очень важна. Рис. №10.

Рисунок №10

2. Прием «Отвлечение»
Группа ударных самолетов противника наступает под прикрытием истребителей. Группа обороняющихся специально дает себя засечь противнику и заставляет сконцентрироваться на себе. С другой стороны вторая группа обороняющихся истребителей атакует ударные наступательные самолеты. При этом малая ЭПР второй группы очень важна! Рис. №11. В Корее этот маневр корректировался с наземных РЛС. В современное время это будет делать самолет ДРЛО.

Рисунок №11

3. Прием «Удар снизу»
В районе боевых действий одна группа идет на стандартной высоте, другая (более квалифицированна) на предельно малой. Противник обнаруживает более явную первую группу и входит в бой. Вторая группа атакует снизу. Рис. №12. При этом малая ЭПР второй группы очень важна!

Рисунок №12

4. Прием «лестница»
Состоит из пар самолетов, каждая, из которой, идет ниже и сзади ведущей на 600 м. Приманкой служит верхняя пара, когда противник сближается с ней, ведомые набирают высоту и выполняют атаку. Рис. №13. ЭПР ведомых, в данном случае очень важна! В современных условиях «лестница» должна быть немного просторнее, но суть остается.

Рисунок №13

Рассмотрим вариант, когда ракета по F-22 уже пущена. Благо наши конструкторы смогли обеспечить нас большой номенклатурой ракет. Прежде всего, остановимся на дальней руке Миг-31 – ракете Р-33. Она обладала великолепной дальностью для того времени, но не способна была бороться с современными истребителями. Как уже говорилось выше, Миг был создан, как перехватчик разведчиков и бомбардировщиков, не способных к активному маневрированию. Поэтому максимальная перегрузка поражаемых целей ракетой Р-33 равна 4g. Современная длинная рука – это ракета КС-172. Однако ее очень давно показывают в виде макета и до принятия на вооружение дело может и не дойти.

Более реальной «длинной рукой» является ракета РВВ-БД, основанная на Советской разработке ракеты Р-37. Дальность, указанная производителем составляет 200км. В некоторых сомнительных источниках, можно встретить дальность в 300км. Скорее всего, это основано на испытательных пусках Р-37, однако между Р-37 и РВВ-БД есть разница. Р-37 должна была поражать цели маневрирующие с перегрузкой в 4g, а РВВ-БД уже способна противостоять целям с перегрузкой в 8g, т.е. конструкция должна быть более прочной и тяжелой.

В противостоянии с F-22 все это мало актуально. Так как засечь на таком расстоянии его силами бортовой РЛС не представляется возможным, а реальная дальность ракет и рекламная сильно различаются. Основано это на конструкции самой ракеты и испытаниям на максимальную дальность. В основе ракет лежит твердотопливный двигатель (пороховой заряд), время работы которого составляет пару секунд. Он, в считанные мгновения, разгоняет ракету до максимальной скорости, а далее она идет по инерции. Рекламная максимальная дальность основана на пуске ракет по цели, горизонт которой находится ниже атакующего. (Т.е. не требуется преодолевать силу притяжения земли). Движение проходит по прямолинейной траектории до скорости, на которой ракета становится уже не управляемой. При активном маневрировании инерция ракеты будет стремительно падать, а дальность сократиться в разы.

Основной ракетой при дальнем воздушном бое с «Раптором» будет РВВ-СД. Рекламная дальность ее немного скромнее в 110 км. Самолеты пятого или четвертого поколения, после захвата их ракетой, должны попытаться сорвать наведение. Ввиду необходимости ракеты после срыва активно маневрировать, энергетика будет потрачена и повторно навестись уже останется мало шансов. Любопытен опыт войны во Вьетнаме, там эффективность поражения ракетами средней дальности составляла 9%.

Во время войны в Заливе эффективность ракет немного выросла, там уходило три ракеты на один сбитый самолет. Современные ракеты, конечно, повышают вероятность поражения, однако самолеты поколений 4++ и 5 тоже имеют не мало контраргументов. Данные, с какой вероятностью ракета воздух-воздух поразит цель, дают сами производители. Эти данные получены при учениях и без активного маневрирования, естественно имеют мало общего с реальностью. Тем не менее, вероятность поражения у РВВ-СД составляет 0,8, а у AIM-120C7 0,9. Из чего будет складываться реальность? Из возможностей самолета сорвать атаку. Это можно сделать несколькими способами – активным маневрированием и применением средств РЭБ, технологией малой заметности. Про маневрирование мы поговорим во второй части, где рассмотрим ближний воздушный бой.

Снова возвращаемся к технологии малой заметности, и какое преимущество получит самолет пятого поколения над четвертым при ракетной атаке. Для РВВ-СД разработан ряд головок самонаведения. В настоящий момент применяется 9Б-1103М, которая способна определять ЭПР 5 м 2 на расстоянии 20 км. Есть также варианты ее модернизации 9Б-1103М-200, которая способна определять ЭПР 3 м 2 на расстоянии 20 км, но скорее всего они будут установлены на изд. 180 для Т-50. Ранее мы принимали ЭПР «Раптора» равной 0,01 м 2 (мнение, что это в передней полусфере – видится ошибочным, в безэховых камерах как правило дают среднее значение), при таких значениях дальность обнаружения «Раптора» будет 4,2 и 4,8 км соответственно. Такое преимущество явно упростит задачу по срыву захвата ГСН.

В англоязычной прессе приводились данные по атаке целей ракетой AIM-120C7 в условиях РЭБ противодействия, они составляли порядка 50%. Аналогию можем провести и для РВВ-СД, однако помимо возможного электронного противодействия, ей придется еще бороться с технологией малой заметности (снова отсылка к графикам из вестника РАН). Т.е. вероятность поражения становится еще меньше. На последней ракете AIM-120C8 или как ее еще называют AIM-120D, применена более продвинутая ГСН, с другими алгоритмами. По заверениям производителя при РЭБ противодействии вероятность поражения должна достигнуть 0,8. Будем надеяться, что наша перспективная ГСН для «изд. 180», даст аналогичную вероятность.

В следующей части рассмотрим развитие событий в ближнем воздушном бою.

Продолжение следует…

Как часто вы задумывались, что какой самолет пролетает над вами или на каком вы собираетесь в путешествие? Это Боинг или Эйрбас? Это A330 или B777?

Здесь представлена простая инструкция для опознания типа и модели самолетов для тех, кто интересуется авиацией. Попробуем сделать эту инструкцию наглядной насколько это возможно.

Как опознать самолет?

Первый и самый простой способ, посмотреть на название самолета, которое часто написано на фюзеляже. На большинстве самолетов его можно найти и прочитать и это не сложно сделать, если вы находитесь на достаточной близости от самолета.
Из практических соображений, мы сфокусируемся только на двух гигантах авиации - Эйрбас (Airbus) и Боинг (Boeing) и не будем рассматривать других производителей, таких как: Lockheed, McDonnell Douglas, Antonov, Ilyushin, Bombardier, Embraer, Sukhoi.
Также мы будем рассматривать самолеты, которые в данный момент активно летают по миру, поэтому старые модели здесь описаны не будут.

Краткая справка

Боинг (Boeing) - это американская компания и крупнейший в мире производитель самолетов по таким показателям как прибыль, заказы и поставки готовых самолетов. Эйрбас (Airbus) - европейский производитель, подразделение EADS, и создатель почти половины мировых самолетов с воздушно-реактивным двигателем.

Нумерация самолетов Боинг начинается с цифры 7, например 737, 747, 757, 767, 777 и самый новый 787 Dreamliner.
Нумерация самолетов Эйрбас начинается с цифры 3, например A300, A310, A318, A319, A320, A321, A330, A340, A380.

Эйрбас или Боинг. A-Team vs. B-Team

Носовая часть Эйрбаса - выпуклая, закругленная

Нововая часть боинга - заостроенная

Проверьте носовую часть самолета, у Боинга она более заостренная, а у Эйрбаса закругленная.

Посмотрите на окна кабины пилотов. Окна на самолете Эйрбас имеют прямую нижнюю линию, а на большинстве Боингов эта граница имеет форму буквы V. Также крайнее окно Эйрбаса выглядит так, как будто его угол отрезали.

Airbus A330 область APU (хвост) - округлая

Boeing B777 область APU (хвост) - "спиленная"

Взгляните на хвостовую часть самолета, а именно на APU (ВСУ - Вспомогательная силовая установка). Оба Эйрбас и Боинг имеют круговую форму хвостовой части, но с одним исключением - у Боинга она имеет "отпиленную" форму на конце.

Все широкофюзеляжные самолеты Эйрбас, кроме A380, имеют прямую форму верхней части фюзеляжа, вплоть до APU. На Боингах хвостовая часть имеет конусообразную форму, а на Эйрбасах верхняя линия остается прямой, а нижняя сильно закругляется вверх.

Узкофюзеляжные или Широкофюзеляжные самолеты

Узкофюзеляжными называют самолеты, у которых всего один проход между сидениями, они обычно меньше и короче по размеру.

Airbus: A318, A319, A320 и A321
Boeing: B737 и B757

Широкофюзеляжными назвают самолеты, к которых два прохода между сидениями, они обычно больше и длинее по размеру.

Airbus: A300, A310, A330, A340, A380 и A350.
Boeing: B747, B757, B767, B777, B787 Dreamliner и B747-8 Intercontinental

2 двигателя или 4 двигателя

Только самолеты серий A340, A380 и B747 имеют 4 двигателя, остальные самолеты имеют по 2 двигателя.

Большие самолеты A340, A380 и B747:

Если у самолета 4 двигателя и 2 полных ряда окон, то это Airbus A380

Если у самолета 4 двигателя и полтора ряда окон, то это Boeing B747

Один ряд сидений, длинный фюзеляж и 4 двигателя - Airbus A340

B777 или A330

Боинг B777 имеет 3 пары колес на каждом шасси. Всего у B777 14 колес, в конфигурации 6 6 2.

У Боинга B777 нет законцовок крыла (winglet).

У самолета Airbus A330 две пары колес на каждом шасси

Колеса: У Боинга 3 пары колес, у Эйрбаса 2 пары колес на каждом шасси.
Хвостовая часть (APU): У Боинга "отпиленная" форма хвостовой части, у Эйрбаса коническая.
Крылья: У Боинга нет законцовок крыла, у Эйрбаса крылья загибаются на концах.

Серия A320 или B737

В терминах вместимости вот как самолеты Эйрбас соответствуют самолетам Боинг
A318 vs. B737-600
A319 vs. B737-700
A320 vs. B737-800
A321 vs. B737-900

Слева B737-700, справа A320. Обратите внимание на разницу формы самолетов.

Сравните A320 наверху и B737 внизу. Фюзеляж 320-го закругленный в носовой части и заостренный в хвостовой. Фюзеляж 737-го заостренный в носовой и закругленный в хвостовой части.

Сможете догадаться где A320, а где B737?

В каждом случае версия самолета Боинг легде и вмещает больше людей. Самолет Эйрбаса расположен выше от земли, по сравнению с Боингом. Самолеты серии A320 имеют технологию fly-by-wire, которая означает, что во время полета компьютер играет важную роль, в отличии от Boeing 737, где пилоту уделяется центральная роль. А320 длинее, по сравнению с B737, но имеет меньший размах крыльев.

Посмотрите на вертикальный стабилизатор в хвостовой части, чтобы отличить 737 от A320. Если угол хвостового стабилизатора очень острый в месте его крепления к фюзеляжу, то это B737.

Если самолет больше, имеет двигатели круглой формы и длинее фюзеляж, то это A320. Если двигатели приплюснуты в нижней части, то это B737.

Подробнее о Боингах.

Подробнее о Боинг B737.
Боинг B737 поставляется в 9 версиях -100, -200, -300, -400, -500, -600, -700, -800, и –900ER. Версии –300, -400 и -500 попадают в категорию классических, а последние 4 версии являются Боингами нового поколения. Серия –300s самые короткие, а -900ER самые длинные.

B737-100 Классический

B737-200 классический

B737-300 классический

B737-400 классический

B737-500 классический

B737-600 новое поколение

B737-700 новое поколение

B737-800 новое поколение

B737-900 новое поколение

Серия Боингов –100s больше не летает.
Если передняя часть двигателя немного приплюснута, то это классическая серия, а если форма почти округлая, то это новое поколение.
Если вы посмотрите на APU и увидите два отверстия, то это новое поколение, если одно отверстие, то это классический вариант.
Также, все классические версии имеют дополнительные маленькие окна над основными в кабине пилотов (eyebrow windows).
Если самолет кажется длинным и это классический, то это 400 серия, если длинный и это новое поколение, то это 800 серия. Если самолет очень длинный и имеет 3 двери на каждой стороне, то это 900 серия.

Подробнее о B747
Боинг B747 выпускается в 5 версиях – 100, -SP, -200, -300, и -400. Все версии длинной 70.6 метров, кроме B747SP, которые на 15 метров короче. Есть несколько вариаций, но мы будем рассматривать только "большую пятерку".

Боинг B747-100 и -200 имеют 10 окон на каждой стороне на верхней палубе, некоторые первые версии серии -100, которые больше не выпускаются имели по 3 окна на каждой стороне верхней палубы.

B747-200 имеет 10 окон на каждой стороне верхней палубы.

B747-300 имеет удлененную верхнюю палубу, по сравнению с сериями -200 и -100. Также у серии -300 есть дверь на верхней палубе.

Только версия Боинга B747-400 имеет загнутые крылья на конце.

Версия B747-SP имеет более короткий фюзеляж, но это компенсируется удлененным носом.

Подробнее о Боинге B757s
B757s производится в двух сериях -200 и -300.

Серия -200 идет с 3 дверями на каждой стороне и маленькими окнами аварийного выхода.

Серия - 300 имеет 4 двери и 2 окна аварийного выхода на каждой стороне.

Подробнее о Боинге B767s

Боинг B767 производится в трех сериях – 200, –300 и –400 с соответствующими версиями для дальних полетов. Серия -200 самая короткая, серия -400 самая длинная соответственно.

B767-200

B767-300

B767-400

Какое ключевое различие между Боингами B757 и B767?

Размах крыла Боинга 767 48 метров, что на 10 метров больше, чем 757. Позиция переднего колеса относительно салона сильнее продвинута вперед в Боинге 767, чем в 757.
Также, основная колесная система находится гораздо ближе к задней части самолета на Боинге 767.

Подробнее о боинге B777s

Самый простой способ идентифицировать Боинг B777 это посмотреть на его хвостовую часть, в поисках хвостового конуса в форме бритвы. Также обратите внимание на основное шасси, если вы видите 6 колес на каждом шасси, то это 777. Существует 4 пассажирских версии Боинга 777: B777-200, B777-200 ER (Extended Range), B777-200LR (Longer Range), B777-300 и B777-300ER (Extended Range). Эти версии отличаются длиной фюзеляжа и дальностью полета. Серия -300s длинее, чем -200s на 10 метров.

Длина фюзеляжа:
B777-200 – 63.7m
B777-200ER – 63.7m
B777-200LR – 63.7m – коммерческий самолет с самой большой дальностью полета. Боинг назвал этот самолет Worldliner, отмечая то, что он может соединить практически любые два аэропорта в мире.

B777-300 – 73.9m
B777-300ER – 73.9m

Подробнее о самолетах Airbus

Эйрбас A300s

A300 B2

A300 B4

A300 -600

Базовый дизайн фюзеляжа А330 заимствован у А300. Как же отличить два самолета, если они припаркованы рядом друг с другом? А330 имеет загнутые вверх кончики крыльев (wingtips) и он длинее, чем А300. Airbus А330 может иметь, а может не иметь wingtips. Также, А330 имеет больший размах крыльев.

A310

Airbus А310 это уменьшенная версия самолета А300. Он производится в двух разных вариантах -200 и -300. Он имеет более короткий фюзеляж и уменьшенную хвостовую часть, по сравнению с А300. Также, А310 имеет только две двери на каждой стороне, в отличии от А300, который имеет 3 двери на каждой стороне.

Подробнее про Airbus A320s

Серия самолетов А320 включает в себя A318-100, A319-100, A320-200 и A321-200.
Если сравнивать длину фюзеляжа, то А318 самый короткий, а А321 самый длинный.

A318-100 – 31.44m

A319-100 – 33.84m

A320-200 – 37.57m

A321-200 – 44.51m

А320 обычно имеет два окна для аварийного выхода на крыльями самолета, тогда как А318 и А319 имеют только одно окно аварийного выхода. Самолет А321 имет 4 двери на каждой стороне.

Подробнее про самолеты Airbus серии A330s

Эйрбас А330 поставляется в 2х пассажирских версиях А330-200 и А330-300. Серия -300 длиннее, чем -200. Самолет версии -300 может перевозить больше пассажиров, но дальность полета у него меньше.

Длина фюзеляжа
A330-200 – 58.8m

A330-300 – 63.6m

Подробнее про самолеты Airbus серии А340s

Если самолет имеет 4 двигателя и одноэтажный салон, то можно поспорить, что это А340. Самолет Эйрбас А340 производится в 4х версиях A340-200, A340-300, A340-500 и A340-600.

Длина фюзеляжа может помочь отличить версии друг от друга. Самолет А340-600 - это второй по размеру самолет в мире, после Боинга B747-8 Intercontinental (разрабатывается в настоящий момент). Обе серии -500 и -600 поставляются в High Gross Weight версиях с увеличенной дальностью полета, объемом топливного бака и весом.

Длина фюзеляжа
A340-200 – 59.39m

A340-300 – 63.60m

A340-500 – 67.90m

A340-600 – 75.30m

Частенько обращаю внимание на пролетающие надо мной самолеты, когда есть доступ к компьютеру и желание, то в интернете легко определить и тип самолета, и высоту-скорость полета, даже номер рейса и место назначения, но если компьютера и интернета нет, что делать? Постепенно вырабатывал методы определения модели по внешнему виду, причем так, чтобы уверенно определять его в весьма невыгодных условиях наблюдения.


На самом деле, если брать обычные самолеты, садящиеся в крупных аэропортах, то моделей их не так уж много. Понятное дело, имеется всякая летающая экзотика, но встречается она не так часто, поэтому большинство самолетов, которые вы сможете увидеть в реальной жизни, сводятся к следующим модеям:

Boeing:

Boeing747 - легко узнаваемый "горбатый" профиль, спутать ни с кем невозможно, второго такого самолета в мире нет.

A380 - тоже легко узнаваемый исполин, двухэтажный салон (два ряда иллюминаторов по всей длине), особой сноровки при узнавании не требует.

A340 - на фоне вышеуказанных самолетов просто длинный узкий самолет, так его и опознаем.

С тремя двигателями имеем два самолета - это Boeing727 и DC10. Отличаются на ура по расположению двигателей, у первого они все в хвосте (вспоминаем Ту-154 или Як-42).

У второго вообще экзотика: два двигателя под крыльями, третий - искусно встроен в киль:

Смотрится довольно неприглядно, как по мне. В данный момент оба используются практически только как грузовые (нет иллюминаторов).

Теперь обратим внимание на расположение двигателей (их осталось только два, напоминаю). Есть две стандартные схемы - двигатели под крыльями и двигатели в конце фюзеляжа. Если двигатели в конце фюзеляжа, то начинаем следующий этап дифференциации. Если самолет очень длинный, то это DC9/MD80/MD90 - дальше отличить их не помогу, сам не выработал схемы, процесс вроде бы довольно сложный, особенно если разглядывать издалека, дизайнеры не сильно заботились о нововведениях.
Если самолет кажется довольно мелким и вертким, то имеем три варианта:


  • Bombardier 100/200/440/700/900/1000

  • Embraer ERJ135/ERJ140/ERJ145

Сначала обращаем внимание на двигатели. У Embraer они расположены высоко:

у Boeing пониже, на уровне иллюминаторов:

у Bombardier они стоят с заметным наклоном вниз выхлопом:

Кроме того у Boeing они стоят ближе к крыльям. Затем обращаем внимание на форму задней части. У Embraer она практически ничем не выделяется, у Bombardier заметен хвостик, у Boeing хвост просто бросается в глаза. Форма кабины тоже сильно отличается. У Embraer - самая заостренная, хищная, панель, закрывающая переднюю стойку (если, конечно, она открыта) самая крупная. У Boeing форма носа привычная для остальных самолетов, а панель мелкая, едва заметная. У Bombardier что-то среднее по всем параметрам, плюс закрылки на крыльях (но это ненадежный признак, их могут домонтировать и на остальные модели).
Разбираемся теперь с самым сложным: два двигателя под крыльями. Самая распространенная схема в современном авиастроении, так что моделей предостаточно. Отличать их друг от друга довольно сложно. К этому классу относятся следующие самолеты:


  • Boeing737

  • Boeing757

  • Boeing767

  • Boeing777

  • Boeing787

  • A318/319/320/321


  • E-170/E-175/E-190/E-195

Сначала пытаемся визуально отнести самолет к одному из классов: маленький или большой. Если он маленький, то выбор стоит между:

  • Boeing737

  • A318/319/320/321

  • E-170/E-175/E-190/E-195

Если самолет виден вблизи в деталях, то в первую очередь смотрим на двигатели, у Боинга они некруглые, а с признаками так называемого "хомячения" - сложной выпуклой формы:

У Airbus и Embraer двигатели строго круглые:

В полете же лучше всего отличать самолеты по форме носа и хвоста. Смотрим на нос и визуально видим, что у Airbus он более округлый:

у Boeing - заостренный:

а у Embraer - вытянутой внизу формы, больше напоминает обводы скоростного поезда:

Следующий четкий признак - форма хвоста. У Boeing и Embraer он выходит из фюзеляжа под очень острым углом, увеличивая его через некоторое время, этот признак позволяет четко произвести распознавание даже издалека, так что запоминаем его:

Нурсултанов Данияр Ербулатович 18 лет

Республика Казахстан, город Уральск, школа-лицей №35

Историка исследовательская работа:

Чем отличаются истребители пяти поколений?

План

  1. Введение
  2. Послевоенный период истребителей
  3. 1 поколение
  4. 2 поколение
  5. 3 поколение
  6. 4 поколение
  7. Истребители поколения 4+ и 4++
  8. 5 поколение
  9. Будущее
  10. Выводы

Введение

Данная тема является актуальной, так как при изучении истории развития истребителей пяти поколений, складываются основные задачи к созданию следующего шестого поколения.

Цель: Изучить историю истребителей пяти поколений, основные характеристики, присущие к каждому поколению, разницу между истребителями пяти поколений и участие их в локальных конфликтах.

Поколение истребителей - это совокупность типов летательных аппаратов, обладающих сходными боевыми возможностями. Как следствие, эти самолёты разрабатывались и эксплуатировались развитыми странами примерно в одно и то же время, при их создании применены сходные технические решения.

Послевоенный период развития истребителей (0 поколение)

За годы Второй Мировой Войны скорость серийных истребителей значительно возросла, однако рост веса силовой установки и всей конструкции существенно опережал прирост энерговооруженности, мало того поршневой двигатель не способен обеспечить скорость ЛА выше определенного предела. Ученые и конструкторы мировых держав осознали эту проблему практически одновременно. Выход из этой проблемы виделся в создании принципиально иного типа двигателя Реактивного.

Главной особенностью послевоенного периода развития истребителей стало появление реактивного двигателя. В основном брали обычные поршневые истребители и ставили на них реактивные двигатели (Як-3 и модификация с реактивным двигателем Як-15).

Реактивный двигатель — двигатель, создающий необходимую для движения силу тяги посредством преобразования потенциальной энергии топлива в кинетическую энергию реактивной струи рабочего тела. Первыми в мире создателями и эксплуатантами реактивного двигателя считаются немцы и англичане.

Первый в мире ЛА с ТРД был-экспериментальный HE-178, который взлетел в Германии в 1939 году. Спустя 2 года в Англии вышел на испытания Gloster E.28/39. В 1944 году в обеих странах появились серийные ЛА с реактивными двигателями, применявшиеся в боях — это: Gloster Meteor и Me.262. Первым советским ЛА с реактивным двигателем стал БИ-1 конструктора Виктора Балховитина, который совершил первый полет 15 мая 1942 года под управлением Григория Бахчиванджи.




Истребители 1 поколения

Для истребителей 1 поколения характерны:

Появление стреловидного крыла

Отсутствие радаров

Частично радар заменяется радиоприцелом

Дозвуковая скорость полета, но у отдельных моделей, например F-100 Super Sabre, возможно незначительное превышение скорости звука.

Авиационные пушки как основное вооружение

Возможно применение неуправляемых ракет, но на вспомогательных ролях

Ярким примером использования истребителей 1 поколения стала Корейская война , где основное противоборство шло между самолетами МиГ-15 и F-86 .

В этой войне на МиГ-15 начали устанавливать первые в мире системы радарного предупреждения, разработанные советским изобретателем-одиночкой В. Мацкевичем.

Мацкевич, узнав о больших потерях в корейской войне вследствие использования американскими F-86 «Сэйбр» активных радиодальномеров, позволяющих обнаруживать цель намного раньше (2,5 км против 150 м в пределах видимости) и изучив сбитый трофейный F-86, предложил схему пассивного радара с акустической сигнализацией, обнаруживающего активный радар противника за 10 км.

Основной же особенностью летательных аппаратов 1 поколения стало стреловидное крыло .

С появлением реактивного двигателя скорость ЛА увеличилась в несколько раз, рост скорости и связанные с этим явления потребовали от ученых кардинально пересмотреть аэродинамику полета и решить целый набор задач. Дело в том, что при увеличении скорости полета увеличивается сопротивление воздуха. Воздух будто вязкая масса не хочет пропускать через себя ЛА. Одним из средств уменьшения этого сопротивления стало применение скоростных профилей и придания крылу стреловидной формы. Основами таких работ стали наработки ученых германии. В СССР первый ЛА со стреловидным крылом был ЛА-160, который поднялся в воздух в 1947 году.

Достоинства стреловидного крыла:

  • Увеличение скорости, при которой наступает волновой кризис, и как следствие — меньшее сопротивление на трансзвуковых скоростях по сравнению с прямым крылом.
  • Медленный рост подъёмной силы в зависимости от угла атаки, а, следовательно, лучшая устойчивость к турбулентности атмосферы.

Недостатки

  • Пониженная несущая способность крыла, а также меньшая эффективность действия механизации.
  • Отрыв потока воздуха в концевых частях крыла, что приводит к ухудшению продольной и поперечной устойчивости и управляемости самолёта.
  • Увеличение скоса потока за крылом, приводящее к снижению эффективности горизонтального оперения.
  • Возрастание массы и уменьшение жёсткости крыла.
Представителями истребителей 1 поколения являются: Миг-15, Ла-15, МиГ-17, F-86, F-105...

2 поколение истребителей

Сверхзвуковая скорость

Появление в качестве штатного оборудования радиолокационной станции

Системы дозаправки в воздухе

Использование ракет в качестве основного оружия воздушного боя

Отказ от пушечного вооружения

Появление новых схем и компоновок истребителей

Достижение сверхзвуковой скорости потребовало поиск новых форм крыла, и совершенствования реактивных двигателей:

1)Острые края плоскостей

2)Цельноповоротное хвостовое оперение (применено на МиГ-19)

3)Изменение конструкции воздухозаборников (кромки воздухозаборников заострились)

Бортовая радиолокационная станция (БРЛС) — радиоэлектронная система, устанавливаемая на летательных аппаратах различных классов и предназначенная для получения радиолокационной информации о воздушных, космических и наземных объектах (целях), в том числе в сложных метеоусловиях и при отсутствии видимости.

Первая отечественная БРЛС "Изумруд" устанавливалась на истребители МиГ-15 и МиГ-17. РЛС работала в импульсном режиме, и могла обнаруживать и сопровождать цели, летящие выше истребителя. Обнаружение и сопровождение осуществлялось двумя переключаемыми антеннами.

Её дальнейшее развитие - "Изумруд-2" имела уже одну антенну, вдвое большего диаметра, за счёт чего возросла дальность обнаружения целей (цель типа В-29 "Изумруд" обнаруживала на дистанции до 15км, "Изумруд-2" до 25-30км).

Для перехватчиков Як-25 была создана БРЛС "Сокол", и её модификация "Орёл" для Су-11, Як-28 и Су-15. За счёт большего диаметра зеркала и большей мощности передатчика дальность обнаружения цели типа В-29 возросла до 40 км.

Дозаправка в воздухе — операция передачи топлива с одного летательного аппарата на другой во время полета.

С самого начала использования аэропланов возникло желание расширить их радиус действия за счёт передачи топлива в воздухе. Ещё в 1912 году были осуществлены первые попытки передать с одного самолёта на другой канистры с топливом. Ввиду высокой опасности и сложности манёвров данный способ передачи топлива развития не получил.

Первые попытки передать топливо при помощи шланга с одного гидросамолёта на другой были произведены английскими военно-морскими летчиками в 1917 году. Успешные попытки такого рода были осуществлены в 1920-х годах. В простейшем случае два медленно летящих самолёта соединялись шлангом, по которому в заправляемый самолёт топливо перетекало под действием силы тяжести. Впоследствии топливо стали ускорять при помощи насосов.

Первые дозаправки в полёте при выполнении боевого задания были произведены во время Корейской войны в ВВС США.

Виды дозаправок: С крыла на крыло, шланг-конус, штанга



Управляемые авиационные ракеты

Первые управляемые ракеты для поражения воздушных целей появились в конце Второй мировой войны в Германии. С помощью ракеты «воздух-воздух» первая победа была одержана 24 сентября 1958 года. Ракеты «воздух-воздух» классифицируются по дальности и типу головки самонаведения.

Первые опыты по наведению авиационной ракеты на самолёт были предприняты в Германии во время Второй мировой войны. Во время налётов союзников люфтваффе столкнулось с недостаточной эффективностью поражения тяжёлых бомбардировщиков применяемым пушечным авиационным вооружением, в результате чего стали разрабатывать очередное «чудо-оружие», способное уничтожить бомбардировщик с безопасного для лётчика-истребителя расстояния. Усилиями немецких конструкторов привели к созданию опытных образцов специализированых ракет «воздух-воздух», таких как Ruhrstahl X-4.

ВВС и ВМС США приняли на вооружение ракеты «воздух-воздух» в 1956 году. Первой ракетой ВВС США стала AIM-4 Falcon; ВМС США получили сразу две ракеты - AIM-7 Sparrow и AIM-9 Sidewinder, модификации которой стоят на вооружении до сих пор. Первую ракету «воздух-воздух» РС-1У (К-5/Р-5) ВВС СССР приняли на вооружение в 1956 году.


24 сентября 1958 года истребитель ВВС Тайваня F-86 атаковал МиГ-15 ВВС Китая ракетой AIM-9B Sidewinder и сбил его. Эта победа считается первой, одержанной с помощью ракеты «воздух-воздух».

Системы наведения управляемых ракет:

Радиокомандная (РК)

Радиолокационная

Инфракрасная

Оптико-электронная

2 поколение характеризуется появлением новых схем и компоновок ЛА.

Например: самолет Mirage III создан по схеме " с низкорасположенным треугольным крылом (угол стреловидности по передней кромке составляет 61 градусов). Так же по схеме «бесхвостка» создан J.35J Draken.

Аэродинамическая схема Бесхвостка — аэродинамическая схема, согласно которой у самолёта отсутствуют отдельные плоскости горизонтального управления, а используются только плоскости, установленные на задней кромке крыла. Эти плоскости называются элевонами и комбинируют функции элеронов и рулей высоты.

Схема получила определённое распространение с появлением сверхзвуковой авиации и треугольных, и дельтавидных крыльев малого удлинения.

Преимуществом такой схемы является меньший вес планера и меньшее сопротивление, однако, меньшее плечо органов вертикального управления приводит к меньшей эффективности управления по каналу тангажа. Внедрение электродистанционных систем управления позволяет нивелировать этот недостаток.

На Миг-21 применено треугольное крыло .

Треугольное крыло- крыло жёстче и легче стреловидного, что не мало важно на больших скоростях (больше 2М).

Преимущетва

  • Имеет малое относительное удлинение
  • В таком крыле можно было разместить больше топлива

Недостатки

  • Возникновение и развитие волнового кризиса;
  • Большие сопротивления и более резкое падение максимального аэродинамического качества при изменении угла атаки, что затрудняет достижение большего потолка и радиуса действия.

Основным полем боя самолетов второго поколения стала Вьетнамская война .

С февраля 1966 года основными противниками F-4 стали сверхзвуковые МиГ-21Ф-13 (часть из них - чехословацкого производства) и МиГ-21ПФ-В (вариант всепогодного, то есть снабженного радиолокационным прицелом МиГ-21ПФ в "тропическом" исполнении), так же как и американские самолеты, оснащенные ракетным оружием - УР Р-Зс с ТГС или блоками с 55-миллиметровыми неуправляемыми авиационными ракетами (НАР) С-5. Командование ВВС и ВМС США продолжало возлагать большие надежды на F-4, считая, что мощное вооружение, совершенная бортовая РЛС, высокие скоростные и разгонные характеристики в сочетании с новыми тактическими приемами обеспечат "Фантомам" превосходство над самолетами противника. Но при столкновениях с более легкими МиГ-21 F-4 начали терпеть поражение за поражением. С мая по декабрь 1966 года США в воздушных боях потеряли 47 самолетов, уничтожив при этом лишь 12 истребителей противника. Сказались большая нагрузка на крыло и несколько меньшие (особенно на средних высотах) угловые скорости разворотов американских истребителей (американцы впоследствии признали, что "Фантом" в целом уступает МиГу на виражах), ограничения по эксплуатационной перегрузке (6,0 против 8,0 у МиГ-21ПФ) и допустимым углам атаки, а также худшая управляемость американской машины. Не обладал F-4 и преимуществом по тяговооруженности: при нормальной взлетной массе она составляла 0,74 у F-4B, а у МиГ-21ПФ - 0,79. Сухая статистика глосит, что из 5 сбитых самолетов 4 были уничтожены именно в ближнем бою. Опыт полученный во Вьетнаме сильно скоректировал взгляды на истребитель 3 поколения, на то каким он должен быть.

3 поколение Истребителей

Основные признаки:

  • Радары повышенной мощности.
  • Использование ракет большой и средней дальности.
  • Многорежимность полета

Военные требовали постоянного увеличения скорости и дальности полета, а это все вело к увеличению веса самолета, а это, как следствие, к увеличению длины разбега и пробега. Это обстоятельство никак не устраивало военных. Ведь длинные взлетно-посадочные полосы — слишком простая цель. Требовали сохранить и большую скорость полета и приемлемые взлетно-посадочные характеристики. Дело в том, что в гонке за скоростью конструкторы постоянно увеличивали стреловидность крыла, а с ростом стреловидности эффективность крыла на взлете и посадке снижалась. Конструкторы предлагали 2 решения: дополнительно использовать подъемный двигатель или установить крыло изменяемой стреловидности. Для сравнительных испытаний построили 2 опытных экземпляра. Один с подъемными двигателями, другой с новым крылом. Оба назывались Миг-23. Испытания показали преимущество самолета с крылом изменяемой стреловидности.

Крыло изменяемой стреловидности — тип конструкции летательного аппарата тяжелее воздуха с неподвижным крылом, позволяющей изменять в полёте один из видов геометрии крыла — стреловидность . На больших скоростях полёта эффективна большая стреловидность, а на малых (взлёт, посадка) — малая.

Самолёты с крылом изменяемой стреловидности и достаточно высокой максимальной скоростью имеют хорошие взлётно-посадочные характеристики. Например, бомбардировщик Су-24 имеет максимальную скорость 1700 км/ч при стреловидности крыла по передней кромке 69° и посадочную 280-290 км/ч, при стреловидности 16°.

Недостатком крыла с изменяемой стреловидностью является его значительно больший вес и усложнение конструкции.

К третьему поколению относятся:

  • В авиации СССР
  • МиГ-23
  • МиГ-25
  • МиГ-27
  • В авиации США
  • McDonnell Douglas F-4 Phantom II
  • Northrop F-5
  • В авиации других стран
  • Dassault Mirage F1
  • Saab 37 Viggen
  • Mitsubishi F-1

Вообще 3 поколение в мировом авиастроении осталось в истории поколением поисков, проб и ошибок. Французы разрабатывая свой Mираж F1 пошли по вполне традиционному пути, внешне он выглядел привычно для своего времени, Шведы на истребителе Фигген использовали оригинальную компоновку с передним горизонтальным оперением и схемой «безхвостка», двигатель самолета оснащался реверсом тяги довольно не обычно для истребителей, устройство позволяет сокращать посадочную дистанцию, не используя тормозной парашют. Американцы истребитель 3 поколения вообще не имели. Вернее создавать они его начали и даже раньше чем МиГ-23. Самолет назывался F-111 и задумывался многофункциональным из-за этого машина получилась большой и тяжелой, с учетом появившегося чуть позже Вьетнамского опыта вовсе не истребитель, в следствии F-111 переквалифицировали в фронтовой бомбардировщик. Но в поколениях истребителей у американцев появился «провал», они заполнили его последними модификациями Фантомов и тут же объявили конкурс на следующее 4 поколение.

4 поколение истребителей.

Взявшись сразу за 4 поколение минуя 3 американцы вырвались вперед, создали сразу 2 самолета легкий F-16 и тяжелый F-15. Была новая концепция именно пары, что означало деление истребителей на лёгкие и тяжёлые.

  • Отличительные особенности 4 поколения:
  • Улучшенные маневренные характеристики (неустойчивая аэродинамическая схема).
  • Двухконтурные турбореактивные двигатели с пониженным расходом топлива.
  • Интегральная схема
  • Применение композиционных материалов

Интегральная схема - это значит крыло и фюзеляж плавно сопрягаются друг с другом, образуя единую несущую поверхность.

Двухконтурные турбореактивные двигатели

В основу двухконтурных турбореактивных двигателей положен принцип присоединения к ТРД дополнительной массы воздуха, проходящей через внешний контур двигателя, позволяющий получать двигатели с более высоким полетным КПД, по сравнению с обычными ТРД.

Пройдя через входное устройство, воздух попадает в компрессор низкого давления, именуемый вентилятором. После вентилятора воздух разделяется на 2 потока. Часть воздуха попадает во внешний контур и, минуя камеру сгорания, формирует реактивную струю в сопле. Другая часть воздуха проходит сквозь внутренний контур, полностью идентичный с ТРД, о котором говорилось выше, с той разницей, что последние ступени турбины в ТРДД являются приводом вентилятора.

Композиционные материалы (композиты) - многокомпонентные материалы, состоящие, как правило, из пластичной основы (матрицы), армированной наполнителями, обладающими высокой прочностью, жесткостью и т.д. Сочетание разнородных веществ приводит к созданию нового материала, свойства которого количественно и качественно отличаются от свойств каждого из его составляющих. Варируя составом матрицы и наполнителя, их соотношение, ориентацию наполнителя, получают широкий спектр материалов с требуемым набором свойств. Многие композиты превосходят традиционные материалы и сплавы по своим механическим свойствам и в то же время они легче. Использование композитов обычно позволяет уменьшить массу конструкции при сохранении или улучшении ее механических характеристик.

По структуре композиты делятся на несколько основных классов: волокнистые, слоистые, дисперсноупрочненные, упрочненные частицами и нанокомпозиты.

Истребители 4 поколения на 10-15% состоят из композитов.

Самолёты четвёртого поколения:

В авиации СССР/России

Су-27

МиГ-29

МиГ-31

В авиации США

Grumman F-14 Tomcat

McDonnell Douglas F-15 Eagle

General Dynamics F-16 Fighting Falcon

В авиации других стран

Dassault Mirage 2000

J-10




Истребители поколения 4+ и 4++

Так принято называть самолёты 4 поколения, модернизация или дальнейшее развитие которых приближает их характеристики и эффективность к истребителям пятого поколения (4+), либо удовлетворяющие большинству, за исключением малозаметности, требований к истребителям пятого поколения (4++).

Для этих самолётов характерны:

  • Высокая маневренность или сверхманевренность
  • Радары с фазированной антенной решеткой, пассивной или активной
  • Сниженная стоимость эксплуатации
  • Многофункциональность
  • Стеклянная кабина
  • Сниженная ЭПР благодаря использованию радиопоглощающих материалов и покрытий
  • Возможность полета на сверхзвуковой скорости без использования форсажа (только Су-35С, Rafale, Eurofighter Typhoon с минимальным числом внешних подвесок)
  • Применение отклоняемого вектора тяги двигателя

Фазированная антенная решётка (ФАР) — направленная антенна с управляемыми фазами или разностями фаз (фазовыми сдвигами) волн, излучаемых (или принятых) её элементами (излучателями). Содержащие большое число управляемых элементов (более 103), входят в состав различных авиационных и космических радиоустройств, зенитных комплексов. ФАР применяется в бортовой РЛС на ЛА различных типов, в первую очередь на истребителях-перехватчиках (Впервые в мире на МиГ-31). Различают пассивную и активную ФАР. В пассивных ФАР используются общие для всех элементов антенны приёмник и передатчик. В активной ФАР каждый элемент является передающим или приёмно-передающим модулем.

«Стеклянная кабина» — панель кабины пилотов самолёта, включающая в себя электронные дисплеи. В традиционной кабине устанавливается множество механических указателей для отображения информации. В «стеклянной» кабине установлено несколько дисплеев системы управления полётом, которые могут быть настроены для отображения необходимой информации. Это упрощает управление самолётом, навигацию и позволяет пилотам сконцентрироваться на наиболее важной информации.

Отклоняемый вектор тяги (ОВТ) — функция сопла, изменяющая направление истечения реактивной струи. Она предназначена для улучшения тактико-технических характеристик самолёта. Регулируемое реактивное сопло с отклоняемым вектором тяги — устройство с изменяемыми, в зависимости от режимов работы двигателя, размерами критического и выходного сечений, в канале которого происходит ускорение потока газа с целью создания реактивной тяги и возможностью отклонения вектора тяги во всех направлениях. Применение:Расширение маневренных характеристик, вертикальный взлет и посадка.

Аэродинамическая схема «Утка» — аэродинамическая схема, при которой у летательного аппарата (ЛА) органы продольного управления (оперение) расположены впереди крыла. Названа так, потому что один из первых самолётов, сделанных по этой схеме — «14-бис» Сантос-Дюмона — напомнил очевидцам утку: вынесенные вперёд плоскости управления без хвоста сзади.

ЛА с аэродинамической схемой «Утка»: Eurofighter Typhoon, Dassault Rafale, Saab JAS 39 Gripen, Су-33.


К поколению 4+ и 4++ относятся:

В авиации СНГ

Су-30

Су-33УБ

Су-34

Су-27СМ2

Су-27М

Су-35С

Су-37

МиГ-31БМ

МиГ-35

В авиации США

Boeing F/A-18E/F Super Hornet

McDonnell Douglas F-15E Strike Eagle

Boeing F-15SE Silent Eagle


Основные характеристики самолётов пятого поколения:

  • многофункциональность, то есть высокая эффективность при поражении воздушных, наземных, надводных и подводных целей;
  • наличие круговой информационной системы;
  • возможность полета на сверхзвуковых скоростях без использования форсажа;
  • сверхманевренность
  • американские конструкторы в ходе работ над F-22 отказались от сверхманевренности в пользу малозаметности (отсутствуетПГО, отклонение вектора тяги только в вертикальной плоскости, ромбовидное крыло);
  • российские конструкторы в ходе работ над ПАК ФА отказались от малозаметности в пользу сверхманевренности.
  • кардинальное уменьшение радиолокационной и инфракрасной заметности самолёта (изменением геометрии самолёта и сопла двигателя, применением композиционных материалов и радиопоглощающих покрытий, а также переходом бортовых датчиков на пассивные методы получения информации и режимы повышенной скрытности);
  • способность осуществлять всеракурсный обстрел целей в ближнем воздушном бою, а также вести многоканальную ракетную стрельбу при ведении боя на большой дальности;
  • автоматизация управления бортовыми информационными и системами помех;
  • повышенная боевая автономность за счёт установки в кабине одноместного самолёта индикатора тактической обстановки с возможностью микширования информации (то есть одновременного вывода и взаимного наложения в едином масштабе «картинок» от различных датчиков), а также использования систем телекодового обмена информацией с внешними источниками;
  • аэродинамика и бортовые системы должны обеспечивать возможность изменения угловой ориентации и траектории движения самолёта без каких-нибудь ощутимых запаздываний, не требуя при этом строгой координации и согласования движений управляющих органов;
  • самолёт должен «прощать» грубые погрешности пилотирования в широком диапазоне условий полета;
  • самолёт должен быть оснащён автоматизированной системой управления на уровне решения тактических задач, имеющей экспертный режим «в помощь летчику».

Истребители пятого поколения:

В авиации России:

Перспективный авиационный комплекс фронтовой авиации (ПАК ФА, проходит лётные испытания; принятие на вооружение ВВС России планируется к 2016 году, начало закупок в 2013 году);

Mitsubishi ATD-X Shinshin (в разработке)

Будущее

Будущее можно сказать за истребителями 5 поколения, но уже многие задумываются о следующем 6 поколении, уже частично есть некоторые характеристики, каким должен быть истребитель 6 поколения. Предполагается, что истребители шестого поколения будут представлять собой автоматизированные беспилотные комплексы, не ограниченные в манёвренности и скорости «человеческим фактором», включённые в общую компьютерную систему управления боевыми действиями.

  • Истребитель шестого поколения будет иметь «сверхнизкий профиль» с плавными обводами фюзеляжа и крыла. По некоторым сведениям, российская компания «Сухой» разрабатывает истребитель шестого поколения по схеме «утка» с обратной стреловидностью крыла, которое полностью интегрировано в фюзеляж. Вертикальное оперение двухкилевое. Американская компания Boeing разрабатывает самолет F/A-XX без вертикального оперения по схеме «летающее крыло», напоминающего бомбардировщик В-2. Истребитель будет оснащен двигателями с изменяемым вектором тяги, и будет способен выполнять взлет и посадку на укороченные ВПП.
  • Все истребители шестого поколения будут иметь сверхзвуковую крейсерскую скорость. Возможно, некоторые из них будут иметь гиперзвуковую скорость полета, эти технологии апробируются на воздушно-космическом самолете Boeing X-37. Истребитель, разрабатываемый компанией «Сухой», будет иметь крейсерскую скорость 1,26М и плазменные стелс-технологии.
  • Будет дальше развиваться маневренность машин. Истребитель шестого поколения будет иметь сверхманевренность на сверхзвуковых скоростях. Россия намерена использовать технологии двигателей с управляемым вектором тяги ± 20 град, что позволит самолёту легко маневрировать на углах атаки 60 град. F/A-XX также будет обладать суперманевренностью.
  • Возможность нанесения дальнего удара. Истребители шестого поколения будут обладать очень большой дальностью полёта, что позволит им наносить удары на «супердальних» дистанциях. Истребитель F/A-XX будет оснащен мощным лазерным и электромагнитным оружием, а также ракетами с гиперзвуковой скоростью полета.
  • Истребитель нового поколения будет интегрирован со всеми системами боевого управления и поражения — наземными, воздушными, морскими, подводными и космическими.
  • Самолёты могут использоваться как в пилотируемом, так и беспилотном режимах (F/A-XX).
  • США планируют оснастить свои ВВС и ВМС истребителями нового поколения в 2030—50 годах. С учетом бюджетных трудностей, министерство обороны США планирует отодвинуть срок принятия на вооружение новых истребителей до 2040 года.

выводы:

1)При изучении истребителей пяти поколений был сформулирован концепт истребителя шестого поколения

2)истребитель шестого поколения будет беспилотным 5) F ighter generations - статья в журнале "Jet fighters: inside and out"

6) Центр Аэрокосмических исследований Республики Казахстан